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Chapter 1

Local Fields and Locally Profinite Groups

§1. Non-Archimedean Fields

Recall the archimedean absolute value |- |, on Q given by |z| = 2 if 2z > 0 and |2| = —2 if
x < 0. The function |- |~ : Q — R satisfies the following properties, where z,y € Q:

(Al) |2|eo = 0, and |z|oo = 0 if and only if z = 0;

(A2) |2yloo = |20 - [Yloo;

(A3) [z 4+ yloo < |2]oo + [Y]oo-

How many other ways are there to “measure” rational numbers? Besides the trivial absolute value,
defined by |z|tiv = 1 if 2 # 0 and |2ty = 0 if £ = 0, there are many other absolute values which
are of number theoretic interest.

We fix a prime number p and measure any integer x € Z by the largest power of p that divides
x; then z is called “p-adically small” if x is divided by a large power of p. For example, 64 = 26 is
2-adically much smaller than 5. More precisely:

Definition 1.1. For each x € Z ~ {0} we put
val, () := max {i € Zxo ’pi divides z in Z} .

For each z € Q \ {0}, we choose a,b € Z \ {0} with z = ¢ and put val,(z) = val,(a) — val,(b). By
convention, we set val,(0) = oo.

FEzercise. Check that val,(x) = val,(a) — val,(b) does not depend on the choice of a,b € Z with
x = %. Show that the function val,: Q — Z U {oo} satisfies the following properties:

— valp(z) = oo if and only if z = 0;
— val,(zy) = val,(z) 4 val,(y) for all z,y € Q;

— val,(x +y) > min{val,(z), val,(y)} for all z,y € Q.
We call the function
| lp: Q — R,
2 laly = p

—valp (x)

the p-adic absolute value.
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Ezercise. (a) The p-adic absolute value on Q satisfies the properties (Al), (A2) and
(A3’) Ultrametric triangle inequality: |v + y|, < max{|z|p, |y}, for all 2,y € Q.

Note that (A3’) implies (A3).
(b) For each z € Q* one has |z|s - [[,|7|, = 1, where the index in the product runs through all
prime numbers.

(c) |z|p <1, for all € Z. In particular, |- |, does not satisty the archimedean property.

As a side note, we mention the following important result:

Ostrowski’s Theorem. Let |-| be a non-trivial absolute value on Q. Then one of the following
cases holds true:

(i) The function | -| is a p-adic absolute value, that is, there exists a prime number p and p € Ry
such that |z| = p~ V@) for all x € Q;

(i) There exists a € Rso such that |z| = |z|% for all x € Q.
Proof. See [Neul3, (3.7) Proposition]. O

The p-adic absolute value on Q is a special case of a non-archimedean absolute value: Let F be
a field.

Definition 1.2. A function |- |: F' — Ris called a non-archimedean absolute value if for all x,y € F
we have:

(NA1) |z| >0, and |z| = 0 if and only if = 0;

(NA2) |zy| =[] |yl;

(NA3) |z + y| < max{|z|, |y|} (ultrametric triangle inequality).
The tuple (F,|-]) is called a non-archimedean field.

By (NA1) and (NA2), the map F* — RZ, z — ||, is a group homomorphism. In particular,

|£1] = 1. We will always assume that |- | is non-trivial, that is, there exists zg € F with |zo| # 0, 1.
The absolute value | - | endows F' with the structure of a topological space: The sets

Do.(z) ={yeFl|ly—z|<e} (x € F, e €Rsp)
form the basis of a topology on F.
Lemma 1.3. Let (F,|-|) be a non-archimedean field.

(a) The function |-|: FF — R is continuous.
(b) The functions

+: FxF —F, (z,y) — x + vy,
< FxF — F (z,y) — xy,
F* — F*, x— !

are continuous. In other words, F is a topological field.
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Proof. The proof only uses (A3). For z,y € F' we compute
|z =z —y) +yl < lv =yl + [yl

Hence |z| — |y| < |x — y|. From |y — 2| = |x — y| we deduce

||z| = lyl| , <z —yl,

where |- | is the usual absolute value on R. This shows that |-| is (even Lipschitz) continuous,
whence (a).
We now prove (b). Let 29,21 € F and € > 0. Pick any y; € D..(x;), for i = 0,1. We compute

(Yo +y1) — (o + 21)| = (o — z0) + (y1 — 21)| < [yo — zo| + [y1 — 21| < 2e,
hence yo + y1 € D<ac( + x1), which shows that addition is continuous. We also have

lyoy1 — zox1| = [(yo — z0)(y1 — 1) + (Yo — xo)z1 + xo(y1 — 21)]
<e-(e+|wo| + |21

Thus, yoy1 € D<e(et|zo|+|a1])(ToT1), Which shows that multiplication is continuous. Finally, let
|zl _ Jz|

reF*and0<e< % Forany y € D..(x) we have |y| = [z+(y—2)| > |z|-|y—2| > |z|-F = 5.
Hence, we have

ly'—a =

x—y‘_ |z —yl _ 2

zy | Jal-fyl e

1

Thus y~! € D<26|I|_2(x*1), which shows that z — z~! is continuous. O

So far, we have not used the ultrametric triangle inequality. We now study properties which are
specific to non-archimedean fields.

Lemma 1.4. For all x,y € F one has:
[ # |yl = |& +y| = max{|z], [y]}.
Proof. Without loss of generality, we may assume |z| < |y|. Then
|z <yl = [(z +y) — x| < max{[z +y|, |=[}
implies |y| < |z + y|. Conversely, we have |z + y| < max{|z|,|y|} = |y|- O
Lemma 1.5. Let (F,|-|) be a non-archimedean field.

(a) The sets Do.(x) and D¢ (x) = {y € F ||y — x| < €} are both open and closed in F.
(b) For x,y € F and € > 0 with D<.(x) N D<.(y) # @ we have D..(x) = D (y).

(¢) F is totally disconnected, that is, every non-empty connected subset of F' is a point.
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Proof. For (a), it is clear that D..(z) is open and D¢.(x) is closed. We prove that D..(x) is closed,;
the fact that D<.(x) is open then follows from a similar argument. Take any y € F' \ D..(z). For
each z € D..(y), we have |z — y| < e < |y — z| and hence Lemma 1.4 shows

|z —al=|(z—y) + (y — )| =max{[z —y|, [y — 2|} = [y —z| > e.

We conclude D..(y) C F' \ D..(x), which shows that D..(z) is closed.
We now prove (b). Fix any z € D..(z) N D<.(y). For each 2’ € D.(x) we compute

2 =yl =" —2) + (x = 2) + (z = y)| < max{|a’ -z, [x - 2], |z —y|} <e.

This shows D..(x) € D..(y). The reverse inclusion follows symmetrically.

It remains to prove (¢). Let M C F be any non-empty connected subset and let x € M. Since
M is connected, we have M C D..(x), because otherwise, M = (M N D.(z)) U (M \ D.(z))
would be a decomposition into two non-empty open subsets by (a). Hence

M C () Dec(x) = {a},
e>0

which shows M = {z}. O

There is another property of the p-adic absolute value on Q that we have not considered, yet:
The set |Q*|, = p” C RZ, is discrete.

Definition 1.6. A non-archimedean absolute value |-| on F is called discrete if |F*| is a discrete
subset of RZ,. In this case, we call (F,|-|) a discretely valued non-archimedean field.

Lemma 1.7. The absolute value | -| on F is discrete if and only if there exists r € Rsq such that
|F*| = rZ.
Proof. If |F*| = rZ for some r € R+, then |-| is clearly discrete. For the converse, it suffices to

show that every discrete subgroup H # {1} of RZ is of the form rZ for some r > 1. Let r € H be
the smallest element with » > 1. Since log, : RS, — R is a topological isomorphism of groups, it
suffices to show that Z is the unique (non-trivial, discrete) subgroup of R which contains 1 but no
element s with 0 < s < 1. But this is clear. O

Notation. Suppose that |- | is discrete and let 7 € Ry with |F*| = r%. We denote
valp = —log,|-|: F* —» Z

the associated (normalized) discrete valuation. We put valp(0) :== co. Observe that |- | = = valr(),
It satisfies the following properties, for x,y € F:

(V1) valp(z) = oo if and only if 2 = 0;
(V2) valp(zy) = valp(z) + valp (y);
(V3) valp(z + y) = min{valp(z), valp(y)}.

Note that Lemma 1.4 says

valp(z) # valp(y) = valp(z + y) = min{valp(x), valp(y)}. (1.1)
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Proposition 1.8. Let |-| be a (non-trivial) discrete non-archimedean absolute value on F with
associated discrete valuation valp: F — Z U {oo}.
(a) op ={x € F||z| <1} = {z € F|valp(z) > 0} is a subring of F.

(b)) mp={x € F||z| <1} ={z € F|valp(x) > 1} is the unique mazimal ideal of op. In partic-
ular, (op,mp) is a local ring, and oy = {x € F||z| =1} = {x € F |valp(z) = 0}.

(¢) oF is a principal ideal domain.

(d) Any w € op with valp(w) = 1 generates mg and is a prime element.

Proof. 1t is clear from (NA2) (or (V2)) that op and mp are closed under multiplication with op. It
follows from the ultrametric triangle inequality (NA3) (or (1.1)) that mp and op are closed under
addition. Hence, o is a subring of F and mp is an ideal of op. For any x € op \ mpr we have
valp(z~!) = —valp(z) = 0 and hence 27! € op. This shows op \ mp C of. It follows from 1 ¢ mp
that mp is a proper ideal of o and hence o} C op \ mp. We deduce

or ~mp < {z € F|valp(z) = 0} = op.

In particular, mg is the unique maximal ideal in op. It is clear that or is an integral domain. Let
a be a non-zero ideal in op. There exists a € a with

valp(a) = minvalp(a’) < cc.
a’€a
It is clear that (a) C a. Conversely, let o’ € a. Then valp(%') =valp(a’) — valp(a) > 0 and hence
% € op. Therefore, a’ = % -a € (a), and this proves a = (a). Hence, op is a principal ideal domain.
The argument also shows that any w € op with valp(w) = 1 generates mp. It remains to show

that w is a prime element. But this follows immediately from the fact that mp = (w) is a prime
ideal. O

Definition 1.9. The ring or of Proposition 1.8 is called the valuation ring of F. Any generator w
of mp is called a uniformizer. The field

Kp = op/mpg
is called the residue field of F.

Example 1.10. The valuation ring of (Q, |- |,) is
Lpy = {x € Q’m: % with a,b € Z andp{b}

with uniformizer p and maximal ideal pZ,). The inclusion Z/pZ — Z,)/pZy) is surjective: If
¢ € Zpy with p{ b, there exist m,n € Z with a = bm + pn and hence § = m +p3 =m mod pZ,).
We conclude that the residue field of Z, is F, = Z/pZ.
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§2. Completion

The property of R that allows one to do analysis is its completeness. The Intermediate Value
Theorem applies to show that every real polynomial f(¢) € R[t] of odd degree has a root in R.
Moreover, if f(t) € R[t] has a real root r, the Newton method can be used to construct a sequence
(rn)n in R with lim,, o 7, = r. In view of its applications to solving Diophantine equations (that
is, finding roots of polynomials with coefficients in Z), one would like to consider non-archimedean
fields which are complete.

Let (F,|-|) be a non-archimedean field. We recall the following notions:

Definition 2.1. A sequence (z,), in F' is called:

(a) convergent if there exists x € F such that for all € > 0 there exists ng € Zso such that
Zn € Deo(x) for all n > ng.

(b) a Cauchy sequence if for all € > 0 there exists ny € Z¢ such that |z, — z,| < ¢ for all
m,n = ng.

As usual, we have:

— If (), converges to x € F, then x is uniquely determined and is called the limit of the
sequence (Z,)n; we write & =: lim,,_, o0 Zp.

— Every convergent sequence is a Cauchy sequence.

— Every Cauchy sequence is bounded.
As a consequence of the ultrametric triangle inequality, we have
— (xn)n is a Cauchy sequence if and only if |z,4+1 — z,| — 0 for n — oo.
Definition 2.2. The field (F,|-|) is called complete if every Cauchy sequence converges.

Theorem 2.3. Let (F,|-|) be a non-archimedean field. Up to isometric isomorphism, there exists
a unique complete non-archimedean field (F, | -||) satisfying:

(1) FCF and |- |iFp=|-].
(ii) F is dense in F.
We call F the completion of F with respect to |- |.

Proof. We first prove uniqueness: Let (F}, |- |;), for i = 1,2, be two completions of (F,|-|) and
denote ¢;: F' — Fj; the corresponding embedding of fields. We define a map

e (1 -[h) — (F2, [ -1l2)

as follows: Since F' C ﬁl is dense, we may choose for any x € ﬁl a sequence (x, ), in F such that
t1(zn) = x for n — oo. If (), is another sequence in F' with lim,_, ¢1(2),) = x, then
lea(y,) — t2(@n)ll2 = llea(@r, — zn)ll2 = |27, — @4
n—oo

=)l = llu(ay) —ulen)l ——0.

ST 3T

= [lu(z
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Hence, the definition () = lim,— o t2(z,) is independent of (x,),. It is trivial to check that
o Fy > Fyisa homomorphism of fields and satisfies ||g0( M2 = ||z||1 for all z € F. By interchang-
ing the roles of F} and F, we obtain an isometry t): (FQ, I l2) — (ﬁl, II-|l1) of fields. Unraveling
the definitions, it is clear that p oy = idx 7 and Yoy =id 7 - Hence, ¢ is an isometric isomorphism.

We now prove the existence statement. Let C be the set of all Cauchy sequences in F'. The
componentwise operations

(xn)n + (yn)n = (iEn + yn)n and (xn)n : (yn)n = (-T'nyn)n

define on C the structure of a commutative ring: The only claim that is not immediately clear is
that (x,yn)n is a Cauchy sequence if (z,,), and (y, ), are. As the sequences (), and (y,), are
bounded, we find C' € Ry such that |z,|, |y,| < C for all n. Let now £ > 0 and choose ng such
that |2, — 2n|, [Ym — yn| < 55 for all m,n > ng. Then

€
<C- C=c¢
2C 2C
for all n,m > ng. Hence, (nyn)n, € C. The map F — C, x — (z,z,z,...), is clearly a ring
homomorphism. Let N C C be the subset of all sequences which converge to zero. It is clearly
closed under addition. Since every Cauchy sequence is bounded, A is also closed under multiplication
with elements of C. In other words, N’ C C is an ideal. We claim that

F=C/N

is a field. Let z € F ~ {0} which is represented by a Cauchy sequence (z),. Then only finitely
many of the x,,’s are zero and hence, after replacing (x,,), by a different representative if necessary,
we may assume x,, # 0 for all n. Note that there exists ¢ > 0 such that |z,| > ¢ for all n, because
otherwise we could construct a subsequence of (z,,),, converging to zero, which implies = 0. Now,

-1 —1) _ |Zn—2ni1| -2 ;
|z, — 2, = ey S ¢ |€s, — Zpny1] — 0 for n — oo, which shows that (z

sequence. Hence, y = (z,; 1), + N € F defines the inverse of z. Thus, F is a field and the composite
1 F < C—» Fis a field embedding. For each x € F we put

1), is a Cauchy

Jall = Timn [, (1.2)

where (z,,), is any Cauchy sequence representing x. One checks that this definition does not depend
on the choice of (x,), and that || - || is a non-archimedean absolute value on F'. It is clear from the
construction that ¢: (F,|-|) = (F,]| - ||) is an isometric embedding and that +(F’) is dense in F. O

Remark. If (F,|-|) is discretely valued with completion (F, | - ||), then (1.2) shows |[F*| = |F*|.
In other words, || - || is also discrete.

Example 2.4. The completion of (Q, |- |,) is denoted Q, and called the field of p-adic numbers.
The extension of |- |, to Q, is again denoted |- |,. The valuation ring

piz{l‘EQpHxlpSl}
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is called the ring of p-adic integers. Since |Q[, = |Q*[, = p”, it follows from Proposition 1.8 that
Z, is a local principal ideal domain with uniformizer p and maximal ideal pZ,. The residue field of
Q, is Fj,. More generally, we have:

Lemma 2.5. Let (F,|-|) be a non-archimedean field with completion (F,||-|). Then or is dense
inop and kK = Kp.

Proof. The kernel of the composite op — op —» oﬁ/mﬁ = Kp is op Nmp = mp. This induces
an inclusion kg < k. Since F' is dense in ﬁ, we may choose for any = € op some y € F with
ly —z| <1. Hencey —x € mp. Theny =+ (y —x) € FNop = op, and y + mp is a preimage of
T+ mg. L]

o~

Ezercise. If (F,|-[) in the above lemma is discretely valued, then op /m} = op /m’;, for all n € Zxo.

§3. Local Fields

Definition 3.1. A local field is a complete, discretely valued non-archimedean field F' with finite
residue field k.

Lemma 3.2. Let F be a local field and w € op a uniformizer. For every element x € F there exists
a unique n € Z and xg € ofﬂ such that © = zow™. The integer n = valp(x) is independent of the
choice of w. In other words, one has F* = w” - o) 2 7 x 0.

Proof. Forn := valp(z) we have valp(xw™™) = valp(x)—nvalp(w) = 0 and hence z := 2w ™" € oy.
It is clear that zo and n are unique with x = zqw™. O]

Proposition 3.3. Let F be a local field with uniformizer w. Let R C op be a subset with 0 € R
and such that the composite map R C op —» kg is bijective. Any series

x = Z a;w’, (1.3)

i}’ﬂo
where a; € R and ng € Z is fized, converges in F, and each x € F' can be written uniquely in this
form. Moreover, valp(z) = ng if an, # 0.

Proof. The partial sums z,, == >

i=n, @iT0" satisty

|Tnt1 — Tn| = [ant1] - |w|n+1 2250,

Thus, (z,,) is a Cauchy sequence in F' and hence converges to a unique element in F' by completeness.
Let now x € F and let ng = valp(x) € Z. Replacing  with w0z, we may assume z € op. We

inductively construct a sequence (a;); in R such that

n
T = Z a;ww’ mod mutt, (1.4)

i=0
for all n > —1. Assume ag,...,a, € R are constructed such that (1.4) holds (for n = —1 this is
vacuous). Then z := w "' (z — Y a;@') € op, and we find a unique a,+1 € R such that

2 = apy1 mod mp. It follows that x = Z?jol a;w' mod m}“. We have thus constructed (a;); in

Rsuch that z—)", - a;w’ € m foralln > 0. Since ()5, m% = {0}, we deduce z = 3, a;w'. O



§4. Locally Profinite Groups 11

Example 3.4. Every element x € Q' admits a unique p-adic expansion
= ap,
i>n0

where a; € {0,1,...,p— 1} and ng € Z with a,,, # 0. Moreover, x € Z,, if and only if ng > 0, and
x € Z, if and only if ng =0 (and ap # 0).

Corollary 3.5. Let F be a local field. Then op is compact. In particular, F' is locally compact.

Proof. Let R C o be as in Proposition 3.3. Assume for a contradiction that op is not compact, and
let o = (Jycp Ux be an open covering which has no finite subcovering. We construct a sequence
(an)n in R such that 7"  a;@w" + @™ lop is not covered by finitely many Uy’s, for all n > 0.

Assume we have already constructed ag, ..., a,. Then
n n n
§ :aiwz +wn+10F — § aiw’ +wn+l(U a+WOF> — U (§ aiwz +awn+1) +wn+20F
i=0 i=0 a€R a€R i=0

. . . . . 1 ;
is an open covering. As R is finite, there exists a,+1 € R such that E;:_o a;ww" + w"20p cannot

be covered by finitely many Uy’s. This finishes the construction of (ay,), with the desired property.
The sequence (31" a;@w"),, converges by Proposition 3.3 to an element z :== Y ° a;,@" € op.
Choose Ao € A such that € Uy,. But then we find n > 0 such that Z;:Ol ;@' +mi =z +ml C

n—1

U),, a contradiction to the fact that >, a;@’ +m% cannot be covered by finitely many Uy’s. [J

Ezercise (Teichmiiller representatives). Let F' be a local field with residue field kg = op/mp of
characteristic p > 0. Fix a uniformizer w.

(a) Let a,b € op and m € Zs; such that @ = b mod m’. Show a?” = b*" mod m’x"™ for all
n e Z)O.

(b) Recall that the residue field kp is perfect, which means that the map x — zP is bijective. Let
z € kp and choose z,, € o such that (z, + mp) = 227" for all n € Z>p.

(i) Show that (z2"),, is a Cauchy sequence in or and hence converges to a unique element
[2] € op.
(ii) Show that [2] = lim, o 2% is independent of the choice of the sequence (z,,),,.
(iii) Show that the map [-]: kp — o satisfies [zw] = [2] - [w] and [1] = 1.

(¢) Conclude that op contains all (#xp — 1)-th roots of unity. (For example, Z, contains all
(p — 1)-th roots of unity.)
§4. Locally Profinite Groups

We have seen that each local field F is Hausdorff, totally disconnected (Lemma 1.5), and locally
compact (Corollary 3.5). We now study topological groups with these properties.
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Definition 4.1. A locally profinite group is a topological group' which is Hausdorff, totally discon-
nected, and locally compact?. A compact locally profinite group is called profinite.
Example 4.2. (a) Discrete groups are locally profinite. Finite discrete groups are profinite.

(b) If G is (locally) profinite, then every closed subgroup is (locally) profinite, and every quotient
of G by a closed normal subgroup is (locally) profinite.

(¢) Arbitrary products of profinite groups are profinite. Finite products of locally profinite groups
are locally profinite.

Ezercise 4.3. Let G be a topological group and H C G a closed subgroup.

(
(

a) Assume G is compact. Show that H is open if and only if the index [G : H] is finite.

)
b) Show that H is open if and only if H contains a non-empty open subset of G.
(¢) Show that every open subgroup of G is closed.

)

(d) Show that H is open in G if and only if the quotient topology on G/H is discrete.
Example 4.4. Let F' be a local field and n € Z3.

(a) F™ and (F*)" (endowed with the product topologies) are locally profinite groups with respect
to addition and multiplication, respectively. The groups op, m%, oy, and (1 4+ m)* are
profinite.

(b) If R is a commutative unital ring, we denote by Mat,, ,,(R) = R" the ring of n X n-matrices
and by GL,,(R) C Mat,, ,,(R) the subset of invertible matrices.

For each A € Mat,, ,(F'), the determinant det(A) € F' is a polynomial in the entries of A. By
Lemma 1.3(b), the map det: Mat,, ,(F) — F is continuous. Hence,

CL,(F) = det ! (F*)

is open in Mat,, ,,(F'). It follows that GL, (F') is locally profinite.
The additive subgroup Mat,, ,(or) = 0}2 of Mat,, ,,(F') is profinite.

Note that GL,,(oF) = detfl(oﬁ) NMat,, ,(oF) is closed in Mat,, ,,(or) hence compact, because
ox C op is closed by Lemma 1.5(a) and det is continuous. Thus, the open subgroup GL,,(op) C
GL,, (F) is profinite. For each r € Z>1, the r-th congruence subgroup

K, = Ker(GLn(OF) — GLn(OF/m%))
=1+ @" Mat, ,(oF),

is an open normal subgroup of GL,,(or), hence profinite. (For the equality, use that for each
A € Mat,, ,(or) we have det(1 + w"A) =1 mod m}, so that det(1 + w”A) € oy and hence
1+w"” Mat,, ,,(or) C GL,(0r).) The groups K,, r € Z>1, form a fundamental system of open
neighborhoods of 1.

IRecall that a topological group is a group G carrying a topology such that the map G x G — G, (g, h) — gh~?!
is continuous.

2A topological space X is called locally compact if for every € X and every open neighborhood U of = there
exists an open neighborhood V of = whose closure V is compact and contained in U.
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Remark (Vedenissov’s Theorem). If X is a totally disconnected, locally compact, Hausdorff topolog-
ical space, then every point z € X admits a fundamental system of neighborhoods which are clopen
(i.e., open and closed).

Proof. Let x € X and let U 3 = be an open neighborhood such that U is compact.

Step 1: Let F C U be a closed subset such that for every y € F there exists a clopen subset
C CU withy € C and z ¢ C. We claim there exists a clopen subset C' C U with F C C and
z ¢ C. Indeed, for each y € F let C,, C U be a clopen subset with y € C, and = ¢ C,. Note
that F is compact as a closed subset of the compact set U. Hence, there exist y1,...,y, € F with
FCU;.,Cy, =C,and z ¢ C.

Step 2: Let M = (- C, where C runs through the clopen subsets of U containing z. We first
claim M = {z}; as X is totally disconnected, it suffices to prove that M is connected. Note that
M is closed in U and x € M. Consider closed (hence compact) subsets E, F C U with M = EUF
and ENF = @. Exchanging F and F' if necessary, we may assume x € E. We will show F' = &.
As X is Hausdorff, we find (by a standard argument) an open subset W C X such that £ C W
and W N F = @. By construction, we have OW N M = @, where W := W ~ W is the boundary of
W. By the definition of M, this means that every point of W N U can be separated from z by a
clopen subset of U. Step 1 provides a clopen subset C' C U such that 9W NU C C and = ¢ C. By
construction, we have WNU ~ C = W NU ~ C, which is clopen in U, contains z, and is disjoint
from F. From M C W NU ~ C we deduce M N F = @&, hence F = @. Therefore, M is connected,
which proves M = {z}.

Note that M = {z} is disjoint from OU := U \ U. Step 1 applied to AU yields a clopen subset
C C U with z € C and C NOU = @. We finish by observing that C' is clopen in X. O

Proposition 4.5. For a topological group G, the following are equivalent:

(i) G is profinite, i.e., compact, Hausdorff, and totally disconnected.

(i) G is compact, Hausdorff, and the neutral element 1 € G admits a fundamental system of open
neighborhoods consisting of open normal subgroups.

(iii) For each open normal subgroup N C G the quotient group G/N is finite, and the canonical
map
G — @1 G/N
NCG
is a topological group isomorphism, where N runs through a fundamental system of open
neighborhoods of 1 consisting of normal subgroups of G.

Proof. “(i) = (ii)”: Let U C G be an open and closed neighborhood of 1. We have to construct
an open normal subgroup N C G such that N CU. Put V := {g € U|Ug C U}. We first show
that V is open. Fix v € V so that Uv C U. As multiplication is continuous, there exist for each
u € U open neighborhoods U, of u and V,, of v such that U,V,, C U. Then U = |J,U, is an
open covering. As U is compact as a closed subset of a compact set, we find uq,...,u, in U with
U=U;_, Uy, Then W :=(\;_, Vi, is an open neighborhood of v and is contained in V', because it
satisfies U - W = J;_, Uy, - W C U. Hence, V is open. Now put H := V NV ~! which is also open.
We have 1 € H. For all g,h € H we compute Ugh™! C Uh™! C U; this shows gh~' € H. Hence,
H is an open subgroup of G which is contained in U. We find g1,...,9, € G with G = J_; ¢;H.
Then N ==\, g;:Hg; !'is an open normal subgroup of G which is contained in U.
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“(il) = (iil)™: Let N be a fundamental system of open neighborhoods of 1 consisting of normal
subgroups of G viewed as a partially ordered set with respect to inclusion. We endow []yc\ G/N
with the product topology, where each G/N is discrete and finite. The topological group [[y G/N
is Hausdorff and compact (by Tychonoff’s Theorem), and

yﬂl G/N = {(QN)N S H G/N

on.(gn') = gy for all N/ C N in N}
NeN NeN

is a subgroup, where ¢y n: G/N' — G/N denotes the canonical projection for any N’ C N
in N. If (gn)nv ¢ im G/N, there exist Ny € N, in N with ¢, ~,(gn,) # gn,. The open
subset {gn, } X {gn,} X [Tz, v, G/IV does not intersect lim G/N. Hence, lim G/N is closed
in [Ty G/N. The canonical map

¢: G — lim G/N,
NeN
g— (gN)n

is well-defined and continuous. Since Ker(¢) = (\ycar NV = {1}, the map ¢ is injective. To prove
surjectivity, let (gnN)n € im G /N be arbitrary. We have to show

M 9vN # 2, (1.5)

NeN

because then any g € (5 gnNN satisfies ¢(g) = (gnN)n. For all Nyi,...,N, € N, there exists
N’ € N with N’ C (N._; N;, by assumption (ii). Then gn'N; = gn,N;, for all 1 < i < r, and
therefore gy € (Ni_; gn, N; is non-empty. As each coset gy N is closed in G (the complement is
open) and G is compact, we deduce (1.5). Since ¢ is continuous and bijective, G is compact, and
@1 e /N is Hausdorff, it follows that ¢ is a homeomorphism.

“(iii) = (i) Since each G/N is compact, Hausdorff, and totally disconnected, also the product
[Inen G/N is compact (by Tychonoff’s Theorem), Hausdorff, and totally disconnected. These
properties are inherited by the closed subset @1 N G/N. O

Example 4.6. Let F' be a local field and @w € or a uniformizer.

(a) The group (of,+) is profinite, and {m’%},,>0 is a fundamental system of open neighborhoods
of 0. Proposition 4.5 shows that the ring homomorphism

oF = l&n op/Mp,
n>0
n
T — (ac +m F)n
is a homeomorphism. By virtue of Proposition 3.3, the map is given by Z;’io a;wt
(Z?;ol ;o + m%)n, which gives another proof of bijectivity.

As a special case, we find Z, = yinn> 0 Z/p™Z, which gives another definition of Z,.
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(b) Note that the map oy — (op/m})* is surjective with kernel U}n) =1+ m’%. Hence, from (a)
we obtain topological group isomorphisms

0f = (imop/m}) " = lim(op /mp)* = lim oy /U™,

Ezercise 4.7. Let G be a topological group. The following are equivalent:

(i) G is locally profinite.
(ii) G is Hausdorff and every open neighborhood of 1 € G contains a compact open subgroup.
(iii) G contains an open subgroup which is profinite.
Ezercise 4.8. Let G be a locally profinite group and H C G a compact subgroup. Show that there
exists a compact open subgroup K C G containing H. (Hint: Let K/ C G be any compact open

subgroup. Show that K" := N,y hK'h~1! is still open and that K := K" H is a compact open
subgroup of G containing H.)

Example 4.9. Let L/F be an algebraic field extension. Then L/F is called Galois if every
irreducible polynomial in F[z] which has a root in L splits into pairwise distinct linear factors in
Ll[z].

We write F(L/F') for the set of intermediate fields of L/F which are finite Galois over F. Then

L/Fis Galois < L= ] E.
EcF(L/F)

Let L/F be Galois. We denote Gal(L/F) := Autp(L) the Galois group of L/F. The canonical

map

Gal(L/F) — lim  Gal(E/F),
E€F(L/F)
o (o8) p
is an isomorphism of groups: The map is injective, because each a € L is contained in a finite Galois
extension E/F. Given (og)g € Jim Gal(E/F), the og’s glue to a unique map o: L — L. It is
clear that o fixes F' pointwise and is invertible, hence is an element of Gal(L/F).
We conclude from Proposition 4.5 that Gal(L/F) is a profinite group. The groups Gal(L/E),

where E/F runs through the finite Galois extensions contained in L, are a fundamental system of
open normal subgroups.

Ezercise (Fundamental Theorem of Galois Theory). Let L/F be a Galois extension.
(a) L/E is Galois, for every intermediate field E of L/F.
(b) The maps
{closed subgroups of Gal(L/F)} —— {intermediate fields of L/F'},
H+—— L% ={a€eL|o(a)=aforalloce H},

Gal(L/E) +—— E

are bijective and inverse to each other.
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(c) A subgroup H C Gal(L/F) is open if and only if L¥ /F is finite.

(d) If F is an intermediate field of L/F, then E/F is Galois if and only if Gal(L/E) is a (closed)
normal subgroup in Gal(L/F'). In this case,

o

Gal(L/F)/ Gal(L/E) =5 Gal(E/F),
oGal(L/E) — O\E

is an isomorphism of topological groups.



Chapter 2

Smooth Representations of Locally Profinite
Groups

§5. First Definitions and Examples
Let G be a locally profinite group. Denote C the field of complex numbers.

Definition 5.1. (a) A G-representation is a pair (V, ) consisting of a C-vector space V together
with a group homomorphism

m: G — Aute(V).
We sometimes write V or 7 instead of (V,7) and gv = n(g)v, for g € G,v € V.

Equivalently, a G-representation is C-vector space V together with a map &: G x V — V,
(9,v) — g-vsuch that 1-v=wv, (gh)-v=g-(h-v) and ®(g, ): V — V is C-linear for all
veV,g hegd.

Given G-representations (V, ) and (W, p), a C-linear map f: V — W is called G-equivariant

if f(gv) = gf(v), for all v € V, g € G. We denote Homg(V, W) the C-vector space of all
G-equivariant C-linear maps.

(b) A G-representation (V, ) is called smooth if for all v € V' the stabilizer
Stabg(v) = {g € G| gv = v}

is an open subgroup of G.

We denote
Rep(G)

the category of smooth G-representations together with G-equivariant maps.
Lemma 5.2. Let (V,7) be a G-representation. The following conditions are equivalent:
(i) (V,m) is smooth.

(i) V=Ugca VE, where VE = {v € V|gv =0 for all g € K} and K runs through all compact
open subgroups of G.

17
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(#ii) The action map G xV — V, (g,v) — w(g)v is continuous, when V is endowed with the
discrete topology and G x V' with the product topology.

Proof. “(i) = (iii)”: Let (g,v) € G x V. Then g Stabg(v) x {v} is an open neighborhood of (g, v)
such that m(g Stabg(v))({v}) = {gv}. Hence, the action map is continuous.

“(iii) = (ii)™ Let v € V and denote the action map by ®. As ®~!({v}) C G x V is open, there
exists (by Exercise 4.7) an open compact subgroup K of G such that ®(K x {v}) C {v}. In other
words, v € VK.

“(il) = (1)”: Let v € V. By assumption, there exists a compact open subgroup K of G with
K C Stabg(v), and Stabg (v) = U esiabg(v) 9K is open. -

Example 5.3. (a) A group homomorphism y: G — C* is called a character. Then (C,x) is
smooth if and only if Ker() is open. The trivial representation is the G-representation (C, 1),
where 1(g) =1 for all g € G.

(b) Let G = GLi(F) = F* for a local field F with uniformizer w. Since F* = w’ x o)
(Lemma 3.2), giving a smooth character x: F* — C* is the same as giving:

— a complex number x(w) € C*;
— a character oy /(1 4+ m})* — C*.

(¢) Let C°(G) be the C-vector space of all functions f: G — C which are locally constant and
have compact support

Supp(f) = {g € G| f(g) # 0},
where the overline means topological closure. The C-vector space structure is given pointwise,

that is, (f1 + f2)(9) = f1(9) + f2(9) and (af)(g) = a- f(g), for all f, f1, f2 € CZ°(G), a € C,
and g € G. The group G acts on C°(G) by right translation:

(p(9)f)(g") = flg'g),  forall feCX(G), 9,9 €G.

We claim that (C2°(G), p) is a smooth G-representation. For each compact open subgroup K,
we put
CZ(G/K) = CZ (G,

these are precisely the functions f € C°(G) which satisfy f(gk) = f(g) forall g € G, k € K.
Let f € C°(G). For each g € Supp(f) there exists a compact open subgroup K, C G such
that f is constant on gK; in particular gK; C Supp(f). As Supp(f) is compact, we find
g1, gr € Supp(f) with Supp(f) = U;_, g:Ky,.* For K :=(,_, Ky, we have f € C°(G/K).
In other words,

cx(@) =Jox/r), (2.1)

where K C (G runs through the compact open subgroups.
Analogously, G acts on C°(G) by left translation,

M9 f)g) = flg™g), forallg,g €@,

and a similar argument as above shows that (C2°(G), \) is smooth. Note that each C°(G/K)
is a (smooth) subrepresentation of (C°(G), A).

IThis argument shows that Supp(f) is open (and closed).
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(d) If (V,nm) is a smooth G-representation and W C V is a G-invariant subspace, then W and
V/W are smooth G-representations.

(e) If {(Vi, mi)}ier is a family in Rep(G), then the direct sum €,

(f) If (V,7) and (W, ) are smooth G-representations, then (7 ® 0)(g)(v @ w) == 7(g)v ® o(g)w
defines on V ®c W the structure of a smooth G-representation.

V; is a smooth G-representation.

(g) Let H C G be a closed subgroup. If (V, ) is a smooth representation of G, then (V,m ) is a
smooth representation of H called the restriction of (V).

Ezercise 5.4. (a) Let (V,7) be a (not necessarily smooth) G-representation and put

Ve = U VE,
KcCa

where K runs through the compact open subgroups of G. Show that (V*°,7) is the largest
smooth subrepresentation of V' (in particular G-invariant and a C-subvector space).

(b) Let f: (V,m) = (W, o) be a G-equivariant homomorphism between G-representations. Show
that f(V°°) C W. Deduce that the assignment V +— V> is functorial.

Ezercise 5.5. Find a locally profinite group G and a family {(V;,7;)}icr in Rep(G) such that the
cartesian product [];.; V; is not smooth.
(Hint: Consider the Zj,-representation [[, .,  C>(Z,/p"Zy).)

Definition 5.6. A G-representation (V) 7) is called irreducible if V has precisely two subrepresen-
tations, namely {0} and V.? We denote Irr(G) the set of isomorphism classes of irreducible smooth
G-representations.

Lemma 5.7. Assume G is profinite. If (V,7) is a smooth irreducible G-representation, then V is
finite dimensional.

Proof. Fix v € V, v # 0. There exists an open normal subgroup K C G with v € VX. Then [G : K]
is finite and hence the subspace W =" rcq/x Cm(g)v € V' is (well-defined and) G-invariant. As
V is irreducible, we conclude that V' = W, which has dimension < [G : K]. O

Remark. The proof of the lemma shows that the irreducible smooth representations of a profinite
group G are given by the irreducible representations of G/K, where K runs through the open
normal subgroups of G. In this way, the representation theory of finite groups enters the smooth
representation theory of profinite groups.

Lemma 5.8. Let K C G be a compact subgroup. The functor Rep(G) — Vectc, V + VE is

exact: Let V! &V % V" be an exact sequence of G-equivariant homomorphisms, which means
that Tm(p) = Ker(v). Then the induced sequence

nK % K ¥ K
(VHt — vV — (V")

18 exact.

2This also means that {0} is not irreducible.
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Proof. Since 1 o ¢ = 0, it is clear that Im(¢®) C Ker(y¥). Conversely, let v € VX with ¥(v) = 0.
Since Im(p) = Ker(z)), there exists v’ € V’ with ¢(v') = v. As V' is smooth, we find an open
subgroup H' C G with o' € (V/)?'. Put H := K N H' so that also ' € (V')?. Then v} =
ﬁ EkeK/H kv’ lies in (V)X and

Z V=,

keK/H

o) = e 2 Hkv) = [.H}

keK/H

> ko) =K

kEK/H

where “k € K/H” means that k runs through a set of representatives of K/H, and that the sum is
finite and independent of this choice. Hence, Im(¢*) = Ker(¢¥). O

Ezercise 5.9. Show that a sequence V' — V — V" in Rep(G) is exact if and only if the induced
sequence (V)& — VE — (V") is exact for all compact open subgroups K of G.

§6. Haar Measures

Let G be a locally profinite group.

Ezercise 6.1. The group algebra C[G] is defined as the C-vector space on the basis {eg4}4cc and
with multiplication given by bilinear extension of the multiplication on G:

(Z ageg> . (Z bgeg) = Z agby, - egn = Z(Z apbp-1 ) .

geqG geqG g,h geG heG

(a) Show that C[G] is a unital, associative C-algebra satisfying G C C[G]*

(b) Let V be a C-vector space. Show that giving a group homomorphism G — Autc(V) is
equivalent to giving a unital C-algebra homomorphism C[G] — End¢(V), where Endc¢ (V)
denotes the C-algebra of C-linear endomorphisms on V' with respect to composition.

In other words, a G-representation is the same as a C[G]-module.

In view of the exercise, we ask whether we can identify smooth G-representations with modules
over some C-algebra. This is indeed the case, but the answer turns out to be much more involved
than for abstract representations. This section serves as a preparation.

Definition 6.2. Recall the smooth G-representation (C2°(G), \) from Example 5.3. A left Haar
measure is a non-zero C-linear map ug: C°(G) — C satisfying the following properties:

() na(M9)f) = pa(f) forall g € G, f € C(G);
(i) pe(f) =0 for all f e CX(G) with Im(f) C Rxo

A right Haar measure is defined analogously.

Notation. For each compact open subset X C G we denote 1x € C°(G) the characteristic
function of X.
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Lemma 6.3. The G-representation (C°(G), \) is generated by the 15, where K C G runs through
the compact open subgroups. Explicitly, for each f € C°(G/K) one has

F=> fl9) M9k,

geG/K

where “g € G/K” means that g runs through a set of representatives of G/K, and that the sum is
finite and independent of this choice.

Proof. Obvious. O

Proposition 6.4. Up to multiplication by a constant ¢ > 0, there exists a unique left (resp. right)
Haar measure pg: CX(G) — C.

Proof. Let pug: C°(G) — C be a left Haar measure. Fix a compact open subgroup K C G so that
ue(lg) € Ryg. We claim that ug(1x) uniquely determines pg. If H C K is any open subgroup,
then 1 =3 ) e/ Lomr = 2per/m AMk)1n. We compute

pe(lx)= > pe(ME)1y) = > pe(ln)=[K: H]-pe(ln). (2.2)

keK/H keK/H

Now, let f € C°(G) be arbitrary. There exists a compact open subgroup H C K with f €
2

C(G/H). Write f =3 cc /i [(9) - A(g)1m as in Lemma 6.3; we deduce from (2.2) that
= > fl9) pe(ln) = Z £(9) - na(1k). (2.3)
geG/H gEG/H

This shows that pg is unique up to multiplication by a positive scalar.

For the existence, we fix a compact open subgroup K C G and choose ug(lx) € Rsg. If
f € C(G) is any element, we write f = deG/H f(9)1g4m for some compact open subgroup H C G
with f € C°(G/H) and define ug(f) as in (2.3). It remains to see that ug(f) is independent
of the choice of H. Let U C K be another subgroup with f € C°(G/U). By replacing U with
U N H if necessary, we may assume U C H. Write 1y = ZheH/U 1py. Check that, if g and h run
through a system of representatives for G/H and H/U, respectively, then gh runs through a system
of representatives for G/U. Then f =3 ¢ > penjv f(9h)1gnu and

Z nghugl;() [KH—Z Zf e (1k)

geG/H heH/U 9€G/H he H/U
Z F(9ne(1k).
gEG/H
Hence, p(f) is well-defined. The properties (i) and (ii) for ug are obvious from (2.3). O

Notation. Let pg be a left Haar measure. For each f € C2°(G) we write

/ f(2) dug(z) = pe(f).
G



22 Chapter 2. Smooth Representations of Locally Profinite Groups

The invariance under left translation then reads fG (9z) dpg(z fG z) dpg(x) or, more infor-
mally, dug(z) = dug(gz) for all g € G.
If X C G is a compact open subset, we call

vol(X) == vol(X; ug) == pua(1lx)
the volume of X with respect to pg.
Ezercise 6.5. Let ug be a left Haar measure.
(a) For any two compact open subgroups H, K C G we have

vol(K)
vol(H)

(K : KN H]
[H:KnH]

=[K:H]=

called the generalized index of H in K.

(b) Let g € G. Show that the function vg: C2°(G) — C, f + pg(p(g)f) defines a left Haar
measure. Hence, there exists a unique dg(g) € Rsg with vg = d¢(9)e. In integral notation:

/fﬁﬂg dpc(z /f Ydpa(x

More informally, we have dug(x) = dg(g)pa(zg) for all g € G.
(c) Show d¢(gh) = di(g)dc(h) for all g,h € G. Hence, dc: G — RZ is a character, called the

modulus character.

(d) Let K C G be any compact open subgroup. Show that d;(g) = [gKg™' : K| € Q% for all
g € G. In particular, dg is trivial on every compact subgroup and hence defines a smooth
character §g: G — C* which is independent of ug. (See also Exercise 4.8.)

(e) Show that vg(f) = pa(dg - f) defines a right Haar measure vg on G. (Here, we define
(Oc - F)(g) = da(g) - f(g) for all f € C2*(G) and g € G.)

(f) Let H be another locally profinite group. Show that dgxr ((g9,h)) = dc(g) - 6u(h) for all
(9,.h) € G x H.

Exercise. Let H C G be a closed subgroup and let : H — C* be a smooth character. Let
C*(H\G,0) be the space of locally constant functions f: G — C with compact support in the coset
space H\G which satisfy f(hg) =6(h)f(g) for all h € H, g € G. Note that C°(H\G, ) becomes
a smooth G-representation if we let G act via right translation.

We fix a left Haar measure py on H and a right Haar measure vg on G.

(a) Show that the map
0: (C2(G). p) — (C(H\G.0),p),
fre o [ Sumpn) (hg) dprs (1)

is a surjective G-equivariant homomorphism. (Hint: For surjectivity, it suffices to prove that
the induced map C°(G)X — C*(H\G,0)X is surjective for all compact open subgroups
KCG@G)



§7. The Hecke Algebra 23

(b) Show that O(A(h)f) = (h)0(h~1) - O(f), for all h € H and f € C>(H\G,0).

(¢) Show that the following are equivalent:

(i) va: C(G) — C factors through a C-linear map v\ g: C°(H\G,0) — C satisfying
vina(p(9)f) = vina(f) for all g € G, f € C(H\G, 0);
(il) 0 =6u - (65")m-

If these conditions are satisfied, v\ g: C(H\G,0) — C is called a semi-invariant Haar
measure on H\G; it is unique up to multiplication by a non-zero scalar. One writes

vina(f) = e flg)dvmna(g), for all f € C°(H\G,0).

Fubini’s Theorem 6.6. Let G, H be locally profinite groups, and let ug, py be left Haar measures

on G, H, respectively. There exists a unique left Haar measure g ® pg: C°(G x H) — C such
that

(ke @ pa)(f @ ) = pe(f) - na(f), (2.4)
for all f € CX(G) and f' € C*(H), where (f @ f')(g,h) == f(g) - f'(h). For all ® € C*(G x H)

we have
//‘P(fc,y)duc(x)dm(y)=/ O(z,y) d(ue @ pr)(z,y) (2.5)
HJG GxH
=//<I>(x,y)duH(y)duc(fﬂ)~
GJH

Proof. Let ® € C°(G x H). There exist compact open subgroups K C G and U C H such that ®
factors through a function G/K x H/U — C with finite support. Hence, we have

o= > Y 2(g,h) Lk @ Luy.

g€G/K he H/U

We deduce that the map C°(G)®¢ C>(H) — C°(G x H) given by f& f' + [(g,h) — f(g)-f'(h)]
is an isomorphism of G x H-representations. Hence, the composite

C>®(G x H) <— C®(G) ®c C=(H) L8, C e C = C

defines the unique left Haar measure on G x H satisfying (2.4). Property (2.5) can then be checked
for ® = f® f' with f € C°(G) and [’ € C2°(H) in which case it is a restatement of

pr (pe(f) - 1) = pa(f) - pa(f) = pe(pu(f) - f). O

§7. The Hecke Algebra

Let G be a locally profinite group and fix a left Haar measure pug: C°(G) — C.
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Definition 7.1. We define on the C-vector space H(G) = C(G) a convolution product as follows:
Let f, f' € H(G). The map G x G — C, (z,g9) — f(z)f'(z~'g) defines an element of C°(G x G);
for all g € G set

(F 200 106) = [ F@F (@) di(a)
/ flay)f Ydpa(y) (substitute = = gy).

Then f* ' := f*,, f' lies in H(G).
We call H(G) the Hecke algebra of G.

Ezercise.  (a) Use Fubini’s Theorem to check that (#(G),*) is an (in general non-unital) associa-
tive C-algebra.

(b) Let v¢ be another left Haar measure. Show that the C-algebras (H(G), %, ) and (H(G), *,.,)
are isomorphic.

Example 7.2. If G is discrete, then H(G) = C[G] as C-algebras. In fact, H(G) has a unit if and
only if G is discrete.

Lemma 7.3. For every g € G and f, f' € H(G) one has:
(a) p(g)(f * ) fx(p(9)f'):
)

(b) M) (f = f') = (Mg)f) = f";
(c) (p(g)f) =6c(g) - f* (MNg™")f'), where 6 is the modulus character from Exercise 6.5.

Proof. (a) and (b) follow immediately from the first and second formula for the convolution product,
respectively. For (c), we compute, for any h € G:

((p(9)f) = f / F(2g)f' (@~ k) du (a / F(zg)f (@™ h) duc(zg)
— 5a(g / FW)F (9y™ 0 dpa(y) = 6a(9) - (F « (Ag™HF)(R). O
Proposition 7.4. For each compact open subset X C G, put
ex = vol(X;ug) ' - 1x € H(G).
Let K C G be a compact open subgroup.

(a) For each open subgroup H C K, one has ey x ex = ex = ex *xey. In particular, ex is an
idempotent.

(b) A function f € H(G) satisfies ex * f = f if and only if f(kg) = f(g) for allk € K, g € G.
Similarly, fxex = f if and only if f(gk) = f(g) for allk € K, g € G.

(¢) The space H(G,K) = ex * H(G) * ex is a subalgebra of H(G) with unit ex. It consists of all
functions f € H(G) with f(kgk') = f(g) for all k,k' € K, g € G.
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Proof. Let g € G. Note that the function z — 1y (x)1x(z~1g) is the characteristic function of
HnNgK. Hence,

(err * ex)(g) = vol(H) ™" vol(K)~" /G 1 (2)1x (27" g) dpc(z)

_ vol(HNgK)
= Sol(H)vol(k) K (9)-

A similar computation shows ey * ey = ex, which proves (a). To prove (b), let f € H(G). The
function e * f is left K-invariant by Lemma 7.3(b). This shows that, if ex * f = f, then f is left
K-invariant. Conversely, if f is left K-invariant, then for any g € G the function = +— 1x(x)f(z71g)
coincides with f(g) - 1x, and hence

(ex * )(g) = vol(K) ™! / 15 (2) f(ag) dpic(z)

G

=vol(K) ™" na(1k) - f(9) = f(9).

The remaining assertions in (b) are analogous.
Finally, (c) follows at once from (a) and (b). O

Remark. Tt follows from Proposition 7.4(b) that for all fi,..., f, € H(G) there exists an idempotent
ex € H(G) with ek * f; = fi = fi x ex for all i. Even though H(G) does not admit a unit, it has
many idempotents. Such C-algebras are called idempotented.

Definition 7.5. (a) An H(G)-module is a C-vector space V together with a C-linear map

H(G)@cV — V,
fev— n(f)v
which satisfies 7(f)(7(f")v) = w(f * f')v, for all f, f' € H(G) and v € V. More concisely, an

H(G)-module is a (non-unital) C-algebra homomorphism 7: H(G) — End¢ (V). We often
write fxv for w(f)v.

A C-linear map «: V — V' between H(G)-modules is called H(G)-linear if af xv) = fxa(v),
forallv eV, f e H(G).

(b) An H(G)-module V is called smooth if H(G)+*V =V i.e., for allv € V there exist fi,..., fn €
H(G) and v1,...,v, € V such that v =" | f; * v;.

We denote
Mod(H(G))

the category with objects the smooth #(G)-modules and morphisms the H(G)-linear maps.
Ezercise 7.6. Let V be an H(G)-module. Show that the following assertions are equivalent:

(i) V is smooth.
(ii) For all v € V there exists a compact open subgroup K C G such that ex v = v.

Deduce that H(G) is a smooth H(G)-module.
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Theorem 7.7. There is an isomorphism of categories

o

Rep(G) — Mod(H(G)),
which is the identity on objects and morphisms.

Proof. Step 1: Let (V,7) € Rep(G) be a smooth representation. We construct on V the structure
of a smooth H(G)-module.

First, it is convenient to introduce some notation. Denote C°(G, V) the C-vector space of
functions f: G — V which are locally constant and have compact support. Then C*(G,V)
becomes a smooth G-representation via (gf)(g") == 7(g)f(g~tq'), for all g,¢' € G, f € C(G,V).

We claim that the map

Ce(G)®c V = C2(G, V), (2.6)
f@vr—[g— f(g)v]

is an isomorphism of smooth G-representations, where G acts diagonally on the left hand side via
g-(f®@v) =Ag)f@m(g)v.

Let ® = )" | fi ®v; € C(G) @c V be in the kernel of (2.6). Since V admits a C-basis, we
may assume that vq,...,v, are linearly independent. But then the condition that ® is in the kernel
is equivalent to f; = 0 for all 7. Hence ® = 0.

We show surjectivity. Let f € C°(G,V) be arbitrary. Since f is locally constant and has
compact support, we find a compact open subgroup K C G such that f(gk) = f(g), for all g € G,
k € K. Then f is the image of deG/K 1,k ® f(g) (the sum is finite, because f has compact
support).

Now, there exists a unique G-equivariant map pug: C°(G,V) — V making the diagram

C=(G) @ V L2, Coe v

|

CX(G,V) ———— V

1R

commute. For each f € C°(G,V), we write

/G F(2) die () = pa(f) € V.

We now define the H(G)-module structure on V. Let f € H(G) and v € V. The function
x = f(x)n(z)v lies in CP(G, V) and hence the element

o —/ f@)(ewdua(z) € V (2.7)

is well-defined. More concretely, we find a compact open subgroup K C G such that v € VX and
f(gk) = f(g), for all g € G, k € K. Then f = deG/K f(9)14k, and then

= Y flg) - m(lg)v=vol(K) > f(g (2.8)

geG/K geG/K
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This also shows that v € VE if and only if 7(ex)v = v.

For all f, f' € H(G) and v € V we verify that 7 (f* f')v = 7(f)(7(f")v). The formula is C-linear
in f and f’ and hence by Lemma 6.3 we reduce to f' = 1,5 and f = 1y, where U, K C G are
compact open subgroups with U C gKg~'. Hence, we have to show

w(th * 1gK)U = ﬂ(th)(ﬂ(ng)v).

Let v € G. Then z — 1,y (x)1,k (2~ 1) is the characteristic function 1hunyKg—1- Using g Ug C
K, we deduce
hU, if vy € hUgK = hgK;,

RUNyKg™' =
TR {@, otherwise.

Now, (1 * 145)(7) = fG 1hunyrg—1 (2) dug(z) = vol(U)1pgx (). We compute

T(Lhw * Ly )v = vol(U) - m(1pgx )v = vol(U) vol(K) - w(hg)v
= vol(U) vol(K) - w(h)m(g)v = vol(U)m(h) (m(1yx)v)
= W(th)(ﬂ'(]_gK)U).

Hence V is a smooth H(G)-module.
If ¢: V — W is a G-equivariant map, it follows from (2.8) that ¢ is also H(G)-linear.

Step 2: Let V be a smooth H(G)-module. We construct on V' the structure of a smooth
G-representation. We first claim that the map

H(G) @) V — V, (2.9)
f®uv— fxv
is an H(G)-linear isomorphism. It is clearly well-defined and H(G)-linear. Surjectivity follows from

smoothness. To prove injectivity, let f1,..., f, € H(G) and vy, ..., v, € V such that Y"1 | f;*v; = 0.
By Proposition 7.4(b) we find an idempotent ex € H(G) such that f; = ek * f;, for all i. Then

n n

Zfi®vi:Z(€K*fi®Ui) :Z(€K®fi*vi) :€K®Zfi*vi:07
i=1

i=1 i=1 i=1
which shows that (2.9) is injective.

By Lemma 7.3(b) the space H(G) ®4 () V is a smooth G-representation via g - (f ® v) =
()\(g) f) ® v. This induces on V the structure of a smooth G-representation. Concretely, if v € V|
we choose a compact open subgroup K C G with ex * v = v and then

m(g)v = egri * v. (2.10)
If p: V— W is a H(G)-linear map, it follows from (2.10) that ¢ is G-equivariant.

Step 3: It remains to show that these actions determine each other. If (V) 7) is a G-representation,
denote (V, 1) the G-representation obtained from V regarded as a H(G)-module. For each g € G
we have 7(g)v = m(eyx)v = 7(g)v, where K C G is a compact open subgroup with v € VX,
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Conversely, let (V,7) be a smooth H(G)-module and denote (V,7) the H(G)-module obtained
from V regarded as a G-representation. Let f € H(G) and v € V. We have to show 7(f)*v = w(f)*wv.
By Lemma 6.3, we reduce to the case where f is of the form 1,5 with v € VX. By (2.8) and (2.10),
we have 7(14x)v = vol(K; ug) - m(g)v = m(1yx)v. This finishes the proof. O

Lemma 7.8. Let (V,7) € Rep(G) and let K C G be a compact open subgroup. Thenw(ex): V=V
is a K -equivariant projection with image VX and kernel

Ker(n(ex)) = V(K) = (v —n(k)v |v e V,k € K),

where (---) denotes the C-linear span; in particular, V = VX @ V(K) as K -representations. More-
over, VE = n(eg)V is a unital H(G, K)-module.

Proof. The fact that 7(ex) is a projection follows from Proposition 7.4(a). It is clear that m(ex )y«
is the identity. Let v € V and k € K. Let H C K be an open normal subgroup with v € V.
Then 7(ex)m(k)v = ﬁ Yver/uT(@k)v = ﬁ > zer/u T(@)v = 7(ex)v, and it follows that
V(K) C Ker(n(ex)) and that w(ex) is K-equivariant. Conversely, if v € Ker(n(ex)), then

1 1
v=v—T7(eg)v =0 ewi Z (k) e Z (v —7(k)v) € V(K)
keK/H keK/H
Hence, V(K) = Ker(n(ex)). The other assertions are clear. O

We will now relate the irreducible smooth G-representations with the simple modules of the
Hecke algebras H (G, K).

Theorem 7.9. Let K C G be a compact open subgroup.

(a) Let (V,7) € Rep(G) be irreducible. Then VX is either zero or a simple H(G, K)-module.
(b) We have a bijection

o

irreducible (V,m) € Rep(G) y ——
with VK # {0}

isomorphism classes o . .
P / { isomorphism classes of}
)

simple H(G, K)-modules
(V,7r) —— VE = 1(ex)V.

Proof. We first prove (a). Let M C VE be a non-zero (G, K)-submodule. As V is irreducible, we
have M 2 m(H(G, K))M = 7(ex ) (H(G)) M = 7(ex )V = VE. Hence, VE is simple.

We have shown that the map in (b) is well-defined. We describe the inverse map. Let M be a
simple H(G, K)-module. Consider the smooth G-representation
W = H(G) * €K ®’H(G,K) M.

Then W = w(ex )W = ek * H(G) * ex @nc,x) M = M.

Let X (W) C W be the sum of all G-invariant subspaces X C W with X* = {0}. Let X, Y C W
be G-invariant subspaces with X% = Y = {0} and consider the surjection X @Y — X + Y.
Lemma 5.8 shows that the map

{0} =XFpYF=(XaV)¥ — (X+1)EK
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is surjective. Hence, (X + Y)X = {0}. Therefore, X (W) C W is the largest G-invariant subspace
with X (W) = {0}. We claim that t(M) :== W/X(W) is irreducible. If X(W) S U C W is a
G-invariant subspace, then UX ;é {0} is a H(G, K) submodule of M. As M is snnple we have
UK = M and hence W = H(G) * ex ®H§(G K) U C U. Hence, t(M) is irreducible. Again by
Lemma 5.8, we have t(M)% = W& /X (W =M.

We need to show that the map [M] — [t(M)] is well-defined. Let f: M —» M’ be an H(G, K)-
linear isomorphism, we obtain a G-equivariant isomorphism

f: W = H(G) *EeR ®7—L(G,K) M i) H(G) *EeK ®7—£(G,K) M =W

such that f(X(W)) = X(W’). Hence, we obtain an isomorphism t(M) —» ¢(M").

It remains to prove injectivity of the map in (b). Let (V,7) € Rep(G) be irreducible. The
inclusion VX C V induces a non-zero map f: W := H(G) ek @y, x) VE — V. Since f(X(W)) C
V is a G-invariant subspace with f(X (W)X = n(ex)f(X(W)) = f(n(ex) X (W)) = fF(X(W)E) =
{0} and V is irreducible, we deduce f(X(W)) = {0}. Consequently, f factors through a non-zero
map

ft(vE) s v
Since both #(VX) and V are irreducible, we have Ker(f) = {0} and Im(f) = V, hence f is an

isomorphism. O

Ezercise. Let (V,7) € Rep(G) be a non-zero representation. Show that (V,) is irreducible if
and only if for each compact open subgroup K C G, the space VE is either zero or a simple
H(G, K)-module.

Definition 7.10. We say G is countable at infinity if for some (equivalently, for each) compact
open subgroup K C G the set G/K is countable.

The next result shows that the Hecke algebra H(G) behaves like a semisimple algebra. This will
be made more precise in §11.

Theorem 7.11 (Separation Lemma). Suppose G is countable at infinity. Let f € H(G) with f # 0.
There exists an irreducible smooth G-representation (V,m) such that w(f) # 0.

Proof. Fix a compact open subgroup K C G with f = ex * f xex € H(G, K). Define fT € H(G, K)
by fT(g) :== f(g~ 1), where the overline means complex conjugation. We have

(F+ (1) = /G F@ Y dug(z) # 0.

Hence h == fT % f # 0, and for each g € G we compute

o) = TN = [ 710 197" duata)
- / f<x-1>-f<x—1g—1>duc<m>= / 7o) - fa) dpe(a)
G G
- /G fHgz) - FaY) dua(z) = (11« £)(g) = hlg);
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thus, h' = h. By induction we see h2" = (ht % h)2""" % 0 for all n; hence h € H(G, K) is not
nilpotent. Since G is countable at infinity, it follows that H(G, K) C C°(G/K) has countable
dimension over C (Proposition 7.4 and Lemma 6.3). The assertion now follows from the next
lemma. 0

Lemma 7.12. Let R be an associative unital C-algebra of countable dimension and let h € R be a
non-nilpotent element.

(a) There exists a € C* such that R(h —a) & R.
(b) There exists a simple R-module M with hM # {0}.

Proof. We prove (a). If h € C, then a = h is as desired. Otherwise, we assume for a contradiction
that R(h — a) = R for all a € C*. Then the uncountable family {1/(h —a) | a € C*} is linearly
dependent, since R has countable dimension. Hence, there exist b1, ...,b, € C* and pairwise distinct
ai,...,an € C* such that .1, b; - 1/(h — a;) = 0. Multiplying from the right by [],(h — a;), we
obtain a non-zero polynomial P(t) € C[t] with P(h) = 0. As C is algebraically closed, we can write
0= P(h) =h"™ ][;(h—c;)", for certain ¢; € C* and ng,n; € Zz1. As h is not nilpotent, it follows
that one of the factors h — ¢; is a (left) zero-divisor, hence R(h — ¢;) # R, which contradicts our
assumption.

We prove (b). By (a) there exists a € C* such that R(h — a) is a proper left ideal in R. By
Zorn’s lemma there exists a maximal left ideal m C R containing h — a. For M := R/m, we then
have hM =aM = M # 0. O

§8. Smooth Representations of Profinite Groups

Let K be a profinite group. In this section we give a precise description of the category Rep(K) of
smooth K-representations. We start with a general result.

Proposition 8.1. Let G be a group. For V € Mod(C|[G]), the following are equivalent:

(i) There exists a family {Wi}ier of irreducible subrepresentations of V- such that V =73, W;.
(ii) There exists a family {Wi}icr of irreducible G-representations with V = @, ., W;.

(iii) For every G-invariant subspace W C V| there exists a G-invariant subspace W' C V' with
V=wageWwW.

If these conditions are satisfied, we call V' semisimple.

Proof. We show that (i) implies (ii) and (iii). Let W C V be a proper G-invariant subspace and
write V =, W; as in (i). The set
X = {J - I’W"‘ZW]‘ is a direct sum}
JjeJ

is partially ordered with respect to inclusion and non-empty, since @ € X. Let Y C X be a totally
ordered subset and put Jo = J ¢y J. We claim Jy € X, that is, W + Zje]o W; is a direct sum.
We have to show that the obvious map a: W& @5 W = W + 3

jeg, Wj is injective. Pick any
w € Ker(e). Since Y is totally ordered, we have w € W & @ .. ; W, for some J € Y. But since

jeJ
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J € X, this shows w = 0 and hence « is injective. We have shown that the upper bound Jy of Y is
contained in X.

Hence, Zorn’s Lemma applies and gives a maximal element J € X. Put V' := W+ jed W; CV.
Take any ¢ € I \ J. As W; is irreducible, we have either W; N V' = {0} or W; NV’ = W,. In the
first case, W + ¢ j ;3 W; is direct and hence J U {i} € X, which contradicts the maximality of
J. Hence, we must have W; C V'. As i € I \ J was arbitrary, we conclude V' = > .., W; C V'
This shows that W' =37, ; W; is a G-invariant complement of W, whence (iii). The particular
case W = {0} proves (ii).

The implication “(ii) == (i)” is trivial. It remains to prove “(iii) = (i)”. Let V' =, _; W; be
the sum of all irreducible subrepresentations of V. Assume for a contradiction that V' & V. By
assumption, there exists a G-invariant subspace V" CV with V' @ V" =V. Let v € V" ~ {0} and
let a & C[G] be the kernel of the orbit map ¢: C[G] — V", f + fv. By Zorn’s Lemma, there exists
a maximal left ideal m C C[G] with a C m. By (iii), there exists a G-invariant subspace U C V

with V' @mv @ U = V. The kernel of the composite map C[G] 2 v 2% U is m. Hence U contains

the irreducible subrepresentation C[G]/m. But then U NV’ # {0} by the definition of V', which
contradicts U NV’ = {0}. Hence, the assumption was wrong and we have V/ = V. O

Ezercise 8.2. Let G be a group and let V' € Mod(C[G]) be semisimple. Show that for every
G-invariant subspace W C V one has that W and V/W are semisimple.

Proposition 8.3. Let G be a group and H C G a subgroup of finite index. Let (V,7) € Mod(C[G]).
Then (V, ) is semisimple if and only if (V, 7 ) is semisimple.

Proof. Step 1: Suppose that (V,mz) is semisimple. Let W C V be a G-invariant subspace. By
assumption, there exists an H-invariant subspace W/ C V such that V. = W & W'. Denote
f'+ V. — W the corresponding H-equivariant projection. The map

f:vVv—Ww,

v ﬁ : Z 9f' (g7 v)
geG/H

is G-equivariant and the identity on W. Hence, Ker(f) is G-invariant, and V = W @ Ker(f). By
Proposition 8.1, (V, ) is semisimple.

Step 2: Suppose (V, ) is semisimple. The subgroup Hy = ﬂgeG/H gHg™! C G is normal and
has finite index, because the canonical map G/Hy — ngc/H G/gHg~! is injective. It suffices to
show that (V,mg,) is semisimple, because then also (V,7x) is semisimple by Step 1. Without
loss of generality, we may assume that (V) is irreducible. As [G : Ho] is finite, (V,mp,) is
finitely generated as a C[Hp]-module. By Zorn’s Lemma, there exists an Hy-equivariant surjection
¢: (V,mp,) — (U,0) onto an irreducible Hy-representation (U,o). For any g € G, define the
Ho-representation (U, g.o) by g.o(h) :== (g 'hg), which is clearly irreducible. Fix a representing
system g1, ...,9, € G of G/Hy. Observe that (E, 1), given by E = C[G]®c(g, U and 7(g)(f®@u) =
eqf ®u, is a G-representation and that (E, 7x,) = @,_;(U, gix0). The map

o: (V,m) — (E,71),

v Zegi ® (b(ﬂ(gi_l)v)
i=1
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is non-zero. We verify that it is G-equivariant. Let g € G. For each 4, there exist unique 1 < j(i) < r
and h; € H with g~ lg; = gjiyh- Note that the map i — (i) is bijective. Hence, we compute

Z% ® ¢ (n Zeg o-1g: ®0(m(g7"9) M)

=T g)zegj(i)eh@qb(ﬂ-(h_ ) ( ](Z) Zegj() ®¢ ](i))v)
=1

— ()3 (v).

Hence, the map ® is G-invariant. As V is irreducible, we deduce that ® is injective. Hence, (V, M| Ho)
is isomorphic to a subrepresentation of the semisimple Hoy-representation @;_, (U, gi«o), hence itself
semisimple by Exercise 8.2. O

Example 8.4 (Maschke’s Theorem). Let G be a finite group. Then every G-representation is
semisimple by Proposition 8.3 (for H = {1}).

Let now K be a profinite group.

Theorem 8.5. (a) Every irreducible V € Rep(K) has finite dimension over C.

(b) For every finite dimensional smooth K -representation V' there exists an open normal subgroup
N C K such that V =V,

(c) Every V € Rep(K) is semisimple.
Proof. (a) was proved in Lemma 5.7. For (b), we pick a basis vy, ...,v, of V together with open
subgroups K; of K with v; € Vi, Then any open normal subgroup N C K satisfying N C ﬂ?zl K;
is as desired.
We prove (¢). We show that each v € V is contained in a semisimple subrepresentation of
V. Pick an open normal subgroup H C K with v € VH, Then W = ZkeK/H Ckv C VH is a

representation of the finite group K/H, hence is semisimple by Maschke’s Theorem. Thus, W is a
semisimple K-representation. O

Schur’s Lemma 8.6. Let (V1) be an irreducible smooth K -representation. Then
Endg (V) = C.

Proof. Let ¢: V — V anon-zero K-equivariant map. Since V' is finite dimensional by Lemma 5.7 and
C is algebraically closed, ¢ has an eigenvalue a € C. Now, the kernel of the map p —aidy: V — V
is a non-zero K-invariant subspace of V. As V is irreducible, it follows that ¢ — aidy = 0. O

Theorem 8.7. Let Vectc be the category of C-vector spaces. Let HTeIrr(K) Vectc be the category
whose objects are tuples (V;), consisting of a C-vector space V; for each T € Irr(K). A morphism
(V2)r = (V)7 consists of a tuple (p;)r, where each pr: Vo — V! is a C-linear map. The functors

A: H(VT,T)EII‘I‘(K) VeCtC <i> Rep(K) :f,
(WT)T — ®T€II‘!‘(K) W &c Vr
(HomK(VT,V))T ——V
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where K acts on the second factor of W, Q¢ V., are quasi-inverse equivalences of categories.

Proof. Let (V,m) € Rep(K). For each (V;,7) € Irr(K) we let V(7) be the sum of all irreducible
subrepresentations of V' which are isomorphic to 7; we call V(7) the T-isotypic component of V.
Note that the map

Homg (V;, V) ®¢ Vy — V(7), (2.11)
P ®v+— p(v),

is an isomorphism: Every K-equivariant map V, — V factors through V(7); hence Homg (V,, V) =
Hompg (V;,V(7)). Write V(1) = @, V- for some set I. We have isomorphisms

Homg (V-, V) ®@c V; = Homg (V;, V(7)) ®c V-

o @ Homg (V;,V;) ®c V; (V; is finitely generated)
I

& @ V. (Schur’s Lemma 8.6)
I

> V().

Now check that the composite coincides with (2.11). For the second isomorphism, we have
used that V, is finitely generated as a K-representation.®> We obtain a natural isomorphism

A(F(V)) = D crer () Homk (V2 V) @c V: = @, V() = V, where the second equality follows
from Theorem 8.5(c).

Let now (W), € [, Vectc. For each (V;,0) € Irr(K) we have (5, W- @c V;) (o) = W, ¢ V.
By Schur’s Lemma 8.6, and since V;, is finitely generated, we have isomorphisms

W, = Homp (Vy, Vi) @c W, = Hompg (Vo, Wo @c V;).
Hence, we have a natural isomorphism
‘F(A((WT)T)) = f(@ W‘r Qc VT) = {HOIHK (VU, @WT ®c V7—>:|

= [HOmK(Vg,Wa K¢ VU)]U = [WU] :

o

(e

This finishes the proof. O

Remark. Theorem 8.7 makes precise the idea that Rep(K) is completely determined by the set
Irr(K) of (isomorphism classes of) irreducible smooth K-representations. If G is a locally profinite
group, then not every smooth G-representation will be semisimple. Hence, the category Rep(G) has
a lot more structure than Rep(K).

Our ultimate goal in this lecture will be to prove a decomposition theorem for Rep(GL,, (F'))
when F is a local field.

3Given a family of K-representations W;, i € I, we have a map D;c; Hompg (Vr, W;) — Homg (Vr, D W),
(pi)i = [v = >;cpwi(v)]. Injectivity is clear. In order to prove surjectivity, let ¢ € Homg (Vr,@D;c; Wi). Let
v € V> \ {0} so that p(v) € @jEJ W; for some finite subset J C I. As V; is irreducible, it is generated by v, hence
o(Vr) C @,c; W;. Denoting pr;: @,c; Wi — W; the j-th projection, we deduce that ¢ is the image of (¢:)s,
where ¢; =0 for i € I\ J and ¢; = prjop for j € J.
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Exercise. Let F be a local field. Construct an equivalence of categories

Rep(F*)= [ Mod(C[t,t™"]).

XE€Irr(oy)

§9. Smooth and Compact Induction
Let G be a locally profinite group and let H C G be a closed subgroup. There is a forgetful functor
Res$ : Rep(G) — Rep(H)

defined by Res%(V, 1) = (V, T #), where m g is the restriction of 7: G — Autc(V) to H. (We

will often just write V or Res$ V or 7|z instead of Res$ (V,7).) In this section we will construct
two functors in the other direction, Rep(H) — Rep(G), which allow us to construct new smooth
G-representations out of smooth H-representations.

Definition 9.1. Let (W, o) € Rep(H) be a smooth H-representation. Put
INDG W = {f: G— W /| f(hg) =o(h)f(g) forall he H, g € G}.

The group G acts on IND% W via right translation: (gf)(¢") = f(¢'g) for all f € IND% W and
9,9 € G. We define Ind$, W as the (G-invariant) subspace of all functions f € IND$ W which have
an open stabilizer. We denote the induced action of G on Indg by Indg o. We obtain a functor

Ind%: Rep(H) — Rep(G),
defined by Ind& (W, o) := (Ind$ W, Ind%, o), which we call smooth induction.

Example 9.2. If W = C is the trivial H-representation, then Ind% C = C°°(H\Q) is the space
of all functions f: G — C for which there exists a compact open subgroup K C G such that
flhgk) = f(g) for all h € H, g € G, k € K. These functions are also called uniformly locally
constant.

Proposition 9.3 (Frobenius Reciprocity). Let (V,7) € Rep(G) and (W, o) € Rep(H). Consider
the H -equivariant homomorphism Indg W — W, f+— f(1). Then the canonical map

o, : Homg (7, Ind$ o) = Hompy (m5,0),
¢ r— [v ¢(v)(1)]

is a C-linear isomorphism, natural in V and W.

Proof. The map is clearly well-defined, C-linear, and natural in V' and W. We describe the inverse
map. Consider the natural map

B:V — Ind$V,
v — [g — w(g)v].
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Note that B(v) lies in Indg V: Let K C G be a compact open subgroup with v € VX, Then
B)(gk) = w(gk)v = n(g)m(k)v = 7(g)v = B(v)(g) for all ¢ € G and k € K. Moreover, 3 is
G-equivariant, since for allv € V, g,¢’ € G we have

(98))(g") = B)(g'g) = n(g'g)v = n(¢") (7 (9)v) = B(w(g)v)(g")-
We claim that the natural map

B*: HomH(mH,o) — Homg(mlndg 0),

b — [v 9o B(v)]

is inverse to au. Let ¢: V — W be H-equivariant. We claim that «.(5%(1)) = v¢: Indeed, for each
v € V we compute

. (B* (1)) (v) = B* (W) (v)(1) = %(B)(1)) = ¥(v).

Conversely, let ¢: V — Ind§ W be G-equivariant. We claim that 5*(a.(¢)) = ¢: Indeed, for all
v €V and g € G we compute

(8" (+(9)) ()] (9) = . (9) (B(v)(9)) = () (7(g)v)

This shows that a, is an isomorphism. O

Remark. In categorical terms, Proposition 9.3 says that the functor Indg is right adjoint to Resg
(or that Res% is left adjoint to Ind$). We will later show that, if H C G is open, then Res% also
admits a left adjoint.

Ezxercise 9.4. Let G be a locally profinite group and N < G a closed normal subgroup. Denote
¢: G — G/N the projection. For (W, o) € Rep(G/N) we write Infg/N oc=ocop: G — Autc(W).
We obtain a smooth representation Infg/N(VV, o) = (W, Infg/N o) € Rep(G). Let (V,7) € Rep(G).

(a) Show that G/N naturally acts on V¥ and that it yields a smooth representation (VV,7V)
Rep(G/N). Construct a natural C-linear bijection

Homg (Infg/N o, 77) =, Homg,n (0, 7rN).

Hence, Infg/ N s left adjoint to 7 + 7V. Informally, this means that V¥ is the biggest
subspace of V' on which N acts trivially.

(b) Show that G/N naturally acts on Vi := V/V(N), where V(N) = (v — w(n)v |v € V,n € N),
and that it yields a smooth representation (Vy, JJy(m)) € Rep(G/N). Construct a natural
C-linear bijection

Homg (ﬂ', Infg/N 0) = Homg (JN(ﬂ'), cr).

Hence, Infg/ N s right adjoint to Jy, which is called the Jacquet functor. Informally, this
means that Vi is the biggest quotient of V' on which N acts trivially.
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Proposition 9.5 (Mackey decomposition). Let K be an open and H a closed subgroup of G. Let
(W,0) € Rep(H). For each g € G denote (W, g;'0) € Rep(g~'Hg) the representation given by
(9:t0)(z) = o(gzg™t) for each x € g~ Hg. The map

~ (o ]
Resg Indg oc— H Indf,(—ngmK 9" (01HNgK g )) J
geH\G/K

f'—> (fg)g7 where fg(k) :f(gk)7
18 a K-equivariant isomorphism.
Proof. Since the double cosets HgK are open in GG, we have a K-equivariant isomorphism

Resf(lndgai( H Ind 9% a) ,
geH\G/K

fr— (fiugr)
Hence, for each fixed g € G, we have to show that the map
Ao o = md ok 07 0 g1 (2.12)
fr=lk— f(gk)] = [y
is a K-equivariant isomorphism. Note that f, is well-defined: Let k € K and = € g 'HgNK. Then
fo(ak) = f(gzk) = f(gzg™"gk) = a(gzg™") f(gk) = (95 ' 0ymngrcg—1) (@) fo ().

As K acts by right translation, it is clear that f — f, is K-equivariant. The inverse map is given by

In

fe J = [hgk = a(h) f/(k)].

Again, f’ is well-defined: Let h,h' € H and k, k' € K with hgk = h'gk’. Then z = kk'~! =
g 'h~ g e g ' Hgn K. We deduce zk’ = k and hgzg~' = h/ and compute

-~

f'(hgk) = a(h)f'(k) = o(h) f'(xk') = o(h) g oymngre— () f' ()
= a(h)o(gzg™ ") f'(K') = o(hgzg™ ") f' (') = o (W) f' (k).

Finally, we check f,(hgk) = o(h)f,(k) = o(h)f(gk) = f(hgk) and (f'),(k) = F'(gk) = f'(k) for all

o~

k € K and h € H. Hence, the maps f — f; and f' — f’ are indeed inverse to each other. O

Definition 9.6. Let (W, o) € Rep(H). The subspace
indG W = {f € Ind$ W | the image of Supp(f) in H\G is compact} C md§ w

is G-invariant; here, Supp(f) satisfies Supp(gf) = Supp(f)g~! for ¢ € G, and is defined as in
Example 5.3(c). We obtain a functor

ind$: Rep(H) — Rep(G),

defined by ind% (W, o) == (indg W,ind% o), is called compact induction.
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Remark. If H\G is compact, then ind$ W = Ind$ W.
Ezercise 9.7. Recall that an additive functor F: Rep(H) — Rep(G) is called ezact if for all
H-equivariant maps W’ 2w L W with Ker(¢) = Im(¢) the induced maps

FW")

satisfy Ker(F(¢)) = Im(F(¢)). Show that the induction functors ind% and Ind$ are exact.
Construction 9.8. Suppose H C G is open, and let (W, o) € Rep(H). For all g € G and w € W
we define [g, w] € ind§ W via

o(zg)w, ifxe Hg™ !,
0, otherwise.

g, wl(w) = {

Note that [g,w] is the unique function in ind$ W with Supp([g, w]) = Hg~* and [g, w](g™*) = w.
The following properties are immediate:

(i) [99",w] = glg’,w] for all g,¢' € G, w € W;
(i) [gh,w]=[g,o(h)w] for all h € G, g € G, w € W
(i) f =3 cmalo™ f(g)] for all f € indf W4
Proposition 9.9 (Frobenius Reciprocity). Suppose H is open in G. Let (W,0) € Rep(H) and
(V,m) € Rep(G). The canonical map
B*: Homg(indg o,T) =, Hompy (o, m5),
Y — [w— P([1,w])]
is a C-linear isomorphism, natural in V and W.

Proof. The map is clearly well-defined, C-linear, and natural in V' and W. We describe the inverse
map. Consider the natural map

a: ind$ Res$ (V) — V,

lg,v] — 7(g)v

and extend by linearity (see (iii) above). It is clear from (i) that « is G-equivariant. We claim that
the natural map

a,: Hompg (o, M) — Homg (ind$ o, 7),
¢ — [lg, w] = 7(g)p(w)]
is inverse to 8*. Let ¢: W — V be H-equivariant. We claim that 8*(«.(¢)) = ¢: Indeed, for each
w € W we compute
B (ax(9)) (w) = a.(¢) ([1,w]) = 7(1)p(w) = ¢(w).

4Recall: “g € H\G” means that g runs through a set of representatives of H\G, and that the sum is finite and
independent of this choice.
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Conversely, let ¢ indg W — V be G-equivariant. We claim that «.(8*(¢)) = ¢: Indeed, for all
[g,w] € indF W we have

a (B (1)) (lg: wl) = m(9) 8" (1) (w) = m(g)w (L, w]) = ¥ (g[1,w]) = ¥([g, w]).-
Hence, £* is an isomorphism. O
Corollary 9.10. Let (V,7) € Rep(G) and K C G a compact open subgroup. Then
Homg (ind% C, V) = VK,
¢ — ¢([1,1])
1s a C-linear isomorphism.
Proof. By Proposition 9.9 it suffices to show that

Hom g ((C, V) — VE,

¢ — ¢(1)
is an isomorphism. If ¢: C — V is K-equivariant, then k¢(1) = ¢(k.1) = ¢(1) for all k € K, so that
#(1) € VE. The rest is clear. O

§10. The Contragredient and Admissibility
Let G be a locally profinite group. If (V,7) is a smooth G-representation, then the algebraic dual
V* := Home(V, C)

admits a G-action via (g¢)(v) = @(r(g~!)v), for p € V*, v € V and g € G. However, the
G-representation V* need not be smooth.

Ezercise. Find a locally profinite group G and V' € Rep(G) such that V* is not smooth.
(Hint: Realize the example in Exercise 5.5 as an algebraic dual of a smooth Z,-representation.)

Definition 10.1. Let (V,7) € Rep(G). Let V C V* be the subspace consisting of all C-linear forms

¢: V — C which have an open stabilizer. This defines a smooth G-representation (V,7) called the
contragredient (or smooth dual) representation of (V7). We then have a canonical pairing

(-,):VxV—C, (2.13)
(& v) V= (&, v) = &(v).

Note that (7(g)¢,m(g)v) = (£,v) forallg e G, ¢ €V, and v € V.

Lemma 10.2. Let (V,7) € Rep(G) and let K C G be a compact open subgroup. Then
f/"K _ (V*)K o (VK)*

In particular, for all non-zero v € V there exists £ € V with (&,v) #0.
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Proof. Only the isomorphism needs a proof. Let V(K) = (v—n(k)v | v € V,k € K). By Lemma 7.8
we have a decomposition
V=VEgV(K) (2.14)

as K-representations. For ¢ € V* = (VE)* @ V(K)* we have the following equivalences:
Ee (VHE = ¢(n(k)v) =¢v), forallke K,veV
= {vk) =0,
== e (V)"
For the last assertion, let K C G be a compact open subgroup with v € VX, Then take any

¢ e (VE)* CV with £(v) #0. O

In order to reasonably study smooth representations, we need to impose some finiteness condi-
tions.

Definition 10.3. A smooth G-representation (V,7) is called admissible if VX is finite dimensional
for all compact open subgroups K C G.

Ezercise. Let (V,7) € Rep(G) and fix a compact open subgroup K C G. Show that the following
are equivalent:

(i) (V,7) is admissible;
(ii) Homg (7,7 k) is finite dimensional, for all 7 € Trr(K).

(Hint: For “(i) = (ii)” use that each 7 € Irr(K) becomes trivial after restriction to some open
subgroup. For “(ii) = (i)”, decompose indg C into irreducible components, for each open H C K.)

Proposition 10.4. Let (V,7) € Rep(G). The following are equivalent:
(i) (V,7) is admissible;
(i) (V,7) is admissible;
(iii) The canonical map V — ‘%/, sending v to the map [¢ — ¢(v)], is an isomorphism.

Proof. Apply Lemma 10.2. Note that V' — {7 is an isomorphism if and only if for all compact open
subgroups K C G the map V¥ — (V)K = (VE)** is bijective. O

Erercise 10.5. (a) Show that the functor V — V is exact. (Hint: Use Lemma 5.8.)

(b) Let (V,m) € Rep(G) be admissible. Show that (V,) is irreducible if and only if (V,7) is
irreducible.

Schur’s Lemma 10.6. Let (V,7) € Rep(G) be an irreducible representation. Then Endg(V) is a
division algebra.?
If, in addition, (V,m) is admissible, then Endg(V) = C.

5A division algebra is an associative unital C-algebra D such that every non-zero element of D has a two-sided
multiplicative inverse in D.
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Proof. Let ¢ € Endg(V), ¢ # 0. Then Ker(p) & V and {0} # Im(p) € V are G-invariant
subspaces. As V is irreducible, we have Ker(¢) = {0} and Im(yp) = V. Hence ¢ is an isomorphism.
This shows that Endg (V) is a division algebra.

Suppose now that (V, ) is admissible. Choose a compact open subgroup K C G such that VX
is non-zero. Now, let ¢ € Endg(V). As VX is finite dimensional and C is algebraically closed, e
admits an eigenvalue, say, A € C. Then ¢ — Aidy € Endg(V) is not an isomorphism and hence
@ — Aidy = 0 by the discussion above. O

Ezercise 10.7. Let (V, ) € Rep(@) be an irreducible admissible representation. Let B: V xV —=C
be a C-bilinear form such that B(7(9)¢, 7(g)v) = B(,v) forallge G andallv e V, € V.
Show that there exists a € C such that B(¢,v) = a- (¢,v) forallv e V, £ € V.

Proposition 10.8. Let G, H be locally profinite groups and let (V,m) € Rep(G), (W, o) € Rep(H)
be irreducible admissible representations. Then (V &@c W, m ® o) is an irreducible admissible G x H -
representation.

Proof. We first show that V ®¢ W is admissible. For all compact open subgroups K C G and
U C H, we have

{1}xU
(‘/7(29(C W)KXU: ((V@(C W)KX{I}) — (VK ®C W){l}XU:VK ®(C WU7 (215)
which is finite dimensional, since V' and W are admissible. As every compact open subgroup of
G x H contains a group of the form K x U, it follows that V ®c W is admissible.

To check that V ®¢ W is irreducible, let X C V ®¢ W be a non-zero G x H-invariant subspace.
If X contains a simple tensor, say v ® w, then

VoW =C[GlveClH|w= (C|G]@ C[H]) - (v®w) CX

shows that X = V ®¢ W. Hence, it suffices to show that X contains a non-zero simple tensor. Let
now x =y -, v; @w; € X, where n € Zx1, v1,...,v, € V, and w1, ..., w, € W. Without loss of
generality, we may assume that vy, ..., v, are C-linearly independent and that w,, # 0. By Schur’s
Lemma 10.6, we have Endg (V) = C. We can thus apply Jacobson’s Density Theorem 10.9 to obtain
r € C[G] such that rv; =v; for 1 <i<n—1,and rv, =0. Then 0 £ v, Qu, =2 — (re )z e X
as desired. O

Jacobson’s Density Theorem 10.9. Let R be an associative unital ring, let M be a simple left
R-module. Write D == Endg(M).% Let 21,...,m, € M be linearly independent over D, and let
Y1y .-+, Yn € M be arbitrary. Then there exists r € R such that rx; = y; for alli=1,...,n.

Proof. The argument is taken from [Put]. We do an induction on n. Let n = 1. Then any
x € M ~ {0} is D-linearly independent, and Rz = M, since M is simple. Hence, the statement is
clear.

Now, let n > 1. We will show the following

Claim. There exist Ai,..., A, € R such that A\;xz; # 0 for all 1 <i < n, and A;z; =0 for all 4 # j.

6Note that D is a division algebra by Schur’s Lemma 10.6 and M is a D-module.
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One the claim is proven, we argue as follows: By the case n = 1, we find r; € R such that
riA\ix; = y; for each i. Then r = Z?Zl ri\; € R satisfies rx; = y; for all ¢, finishing the proof.

It remains to prove the claim. Fix 1 < ig < n. In order to produce a contradiction, we assume
that the following property holds:

(P;,) For all r € R such that rz; = 0 for all ¢ # g, we have rz;, = 0.

Up to reordering the z;, we may assume without loss of generality that i9g = n. Define an R-linear
map f: M"~t — M as follows: Let (21,...,2,_1) € M"~1. By the induction hypothesis, there
exists @ € R such that ax; = z; for all 1 <i <n — 1. We then define

fz1,. 0 2021) = axy,.

Observe that f is well-defined: If ¢’ € R is another element with a’z; = 2; for all 1 <7 < n — 1,
then (a —a')z; =0 for all 1 < i < n —1 and hence (a — a’)z,, = 0 by property (P). But this means
azr, = a'zr,, so f is indeed well-defined.

For each 1 < i < n — 1, we define m; € D = Endg(M) as the composition M 5 M1 EN M,
where ¢; is the inclusion of M into the i-th summand. For all zq,..., z,_1 we thus have

flz, oy 2no1) =M 21+ T2 2o+ -+ Tt Zn_1.

In particular, we have x, = f(z1,...,Tp—1) = Z?:_ll m;x;, which contradicts the fact that the x;

are D-linearly independent. Hence, property (P;,) is not satisfied, so we find A\, € R as in the
claim. O

§11. Compact Representations

In this section we will generalize the results of §8. Let G be a locally profinite group. We will
study a class of smooth representations of G which behave like smooth representations of a profinite

group.
We fix a left Haar measure ug (Definition 6.2). From Theorem 11.7 on we make the assumption

that ug(p(9)f) = pe(f) for all g € G, f € CX(G); in this case, G is called unimodular. By

Exercise 6.5, G is unimodular if and only if the modulus character dg: G — C* is trivial.

Example 11.1. (a) If G is compact or, more generally, if G is the union of its compact open
subgroups, then G is unimodular.

(b) We will see later (Proposition 12.18) that for any local field F, the group GL,, (F') is unimodular.
But the subgroup B of upper triangular matrices in GL,,(F') is not unimodular. (Prove this
for n = 2!)

Definition 11.2. A smooth G-representation (V, 7) € Rep(G) is called compact if for all v € V'~ {0}
and all compact open subgroups K C G, the function

fKﬂ)I G — ‘/,
g m(ex)m(g™ v

has compact support (hence lies in C2°(G,V)). Here, e = vol(K) 11x € H(G) is the idempotent
from Proposition 7.4. By Lemma 7.8, we may view 7(ex) as the projection V —» VE along V(K).
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Remark. If (V,7) is compact, then any subrepresentation and every quotient of V' is compact.
Indeed, let W C V be a G-invariant subspace. It is trivial to see that (W, 7) is compact. Since
frwsw(9) = fro(g) + W in V/W, for all g € G, it follows that (V/W, ) is compact.

Although the functions fx , are nice to work with, it is in general not easy to check whether
fK v has compact support. We will next prove a necessary and sufficient criterion to verify when a
representation is compact.

Definition 11.3. Let (V,7) € Rep(G). For all v € V ~ {0} and ¢ € V ~ {0} we call the function
me: G — C,
g— (&g~ )
a matriz coefficient of (V, ).

Theorem 11.4. A smooth G-representation is compact if and only if all matriz coefficients have
compact support.

Proof. Let (V,m) € Rep(G). Let K C G be a compact open subgroup, and let v € V', € € VE  both
non-zero. The functions fx ., and mg , are constant on the cosets gk, hence they have compact
support if and only if the image of their support in G//K is finite. Also note that, since &y (x) =0
and 7(eg) is the projection onto VX, we have ¢ o w(ex) = &, and hence

E(frw(9)) = &(mlex)m(g™ ) = E(m(g™")v) = mew(g),

for all g € G. Hence, we have Suppme,, € Supp fx . This shows that, if (V,x) is compact, then
all matrix coefficients have compact support.
Conversely, assume that all matrix coefficients have compact support. Fix a compact open

subgroup K C G and let v € V ~ {0}. It suffices to find &1,...,&, € VE such that

Supp fru C U Supp me, - (2.16)

i=1
The image of fx, spans a subspace E, of VE. Let {g;}ic; be a family in G such that the
w; = fr.o(9:) = m(ex)m(g; *)v form a C-basis for E,. Choose any & € (VX)* = VK such that
§o(w;) = 1 for all i € I. As Suppmyg, /K is finite and | |;.; iK' C Suppme,,, it follows that [

is finite, i.e., E, is finite dimensional. So let &,...,&, € (VE)* whose restriction to E, form a
basis for E}. For each g € G there is some i such that me, ,(9) = &(fk,0(9)) # 0. Thus, (2.16) is
satisfied. O

Proposition 11.5. Fvery finitely generated compact representation is admissible. In particular,
every irreducible compact representation is admissible.

Proof. Let (V,7) be a compact G-representation generated by, say, v1,...,v,. Let K C G be a
compact open subgroup. Note that each fx ,, has finite image, as it has compact support and is
constant on the left cosets g /K. Hence, the images of the fx u,,-.., fK,v, span a finite dimensional
subspace of VX For all v = Z QT (gm)vz € VK, where ai; € C, g;; € G, we compute

v = W(GK)U = Zaijﬂ(eK gzg Vi = Zazij v; glJ
,J

This shows that V¥ is finite dimensional. Hence, V is admissible. O
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Recall that G is called countable at infinity if G/K is countable for some compact open subgroup
K C G (Definition 7.10). The main reason we care about this notion is the following strong form
of Schur’s lemma:

Schur’s Lemma 11.6. Suppose G is countable at infinity. Let (V,m) € Rep(G) be irreducible.
Then
Endg(V) = C.

In particular, if Z(G) denotes the center of G, there is a smooth character wy : Z(G) — C*, called
the central character of (V,7), such that w(z)v = wy (2)v for all z € Z(G) and v € V.

Proof. Fix any v € V, v # 0, and let K C G be a compact open subgroup with v € V. Then
>_gecyx Cm(g)v is a non-zero G-invariant subspace of V' of countable dimension. As V' is irreducible,
it follows that dimc V' is countable. Moreover, the map Endg (V) — V, ¢ — ¢(v) is injective (since
v generates V as a G-representation), and hence Endg (V') has countable dimension over C. By the
general version of Schur’s Lemma 10.6, Endg(V) is a division algebra over C.

Let ¢ € Endg(V) be non-zero. Then ¢ is not nilpotent, and hence by Lemma 7.12(a), there
exists a € C* such that ¢ —aidy is not left invertible. As Endg (V) is a division algebra, we deduce
p—aidy =0.

For the existence of the central character, note that for each z € Z(G) the endomorphism 7(2)
lies in Endg(V') = C. Hence, there exists a unique wy (z) € C* with 7(z) = wy (2) idy. One easily
checks that wy is a smooth character. O]

The main goal for this section is the following theorem:

Theorem 11.7. Suppose G is unimodular and countable at infinity. Let (W,7) € Rep(G) be an
irreducible compact representation. Fach (V,7) € Rep(G) admits a G-equivariant decomposition

V=V oVt
where V() is the T-isotypic component of V, and (W, ) does not occur as a subquotient of V (7)*.

The proof needs some preparation and will be deferred to the end of the section. We assume
that G is unimodular and countable at infinity.
Given any (V,7) € Rep(G), consider the action of G x G on End¢ (V) given by

((9,9") - 9)(v) =w(g9)p(n(g'" ")), forallg,g' e G,veV.

We denote End™ (V') C End¢ (V) the largest smooth G x G-invariant subspace.
Fix an irreducible compact G-representation (W, 7). We let G x G act on W @c W by (g,9’) -
(w@&) = T7(g)w @ 7(g')E.

Lemma 11.8. The map

A: W ®@c W —» End™ (W), (2.17)
W E— [w' — §(w’)w]

is a G x G-equivariant isomorphism.
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Proof. For all g, g’ € G, £ € W and w,w’ € W, we compute

A((9,9) - (w® &) (w') = A(T(9)w @ 7(g")E) (w') = (7(9")€)
E(r(g~Mw') - T(g)w = 7(9) (E(T(g"™
T(9)A(w @ &) (r(g'Hw')
[(9,9") - A(w @ O] (w').

This shows that A is G x G-equivariant. It suffices to show that the induced map

|| Il
\ —~
g\
\]
—~~
<
g

)KXK

AR (W eeW — End¢(W)E*E

is a C-linear isomorphism for all compact open subgroups K C G. Observe that

)KXK

(W @c W =W @c WK =W @c (WK,

cf. (2.15). Let now ¢ € Endc(W)5*¥ so that 7(k)p(w) = p(w) and ¢(7(k)w) = @(w) for all k € K
and w € W. The first condition means ¢(W) C WX. The second condition means ew k) = 0.
Since W = WX @ W(K) by Lemma 7.8, we conclude that

Endc(W)5*K = Endc(WF).

Under these identifications, the map A% becomes

WE @c (WE)* =5 Ende(W5),

w®RE— [w = E(w)w],
which is an isomorphism (W is admissible by Proposition 11.5, hence W is finite dimensional). [
Lemma 11.9. Let (V,7) € Rep(G). The maps
m: W @c W —s H(G), and m: H(G) — End>™(V),
W E— Mew fr—r(f)

are well-defined and G x G-equivariant.

Proof. Since (W, ) is compact, Theorem 11.4 shows that the matrix coefficients mg ,, lie in H(G) =
C*(G). If f € H(G), we find a compact open subgroup K C G with ex x f = f = f xex.
Lemma 7.8 shows

m(k)m(f)m (k) = m(k)m(ex)m(f)m(ex)n(K') = m(ex)m(f)m(ex) = 7(f)

for all k, k' € K. Hence 7(f) € Endc(V)5*X C End™ (V). Hence, m and 7 are well-defined.
Let now g,¢', 2 € G, w € W, and £ € W. We compute

m((gag/)(w@)g))( ) m?(g )&,T(g)w(x) < ( /)57 ( _1) (g)w>
= (& 7(g e g)w) = mew(g 2g’) = (9.9 )mew] ().

Hence, m is G x G-equivariant.



§11. Compact Representations 45

Similarly, for any g,¢’ € G and v € V we compute
(60-6)7() @) = o) (Drle ) = [ F@)rlaad " odpo(a)

— dalg™) /G F(g™ gy ()v dp(z) = (g’ ™) - 7((9.9) 1) (v)
=7((g9,9')f)(v)

where for the last equality we have used dg(g'~!) = 1, because G is unimodular. Hence, 7 is
G x G-equivariant. O

Consider now the G x G-equivariant map
Y =mo A~ : End® (W) — H(G).

Proposition 11.10. Suppose G is unimodular and countable at infinity. Let (W, T) € Rep(G) be
an irreducible compact representation.

(a) Let (E,o0) € Rep(G) be irreducible and not isomorphic to (W, ). For each f € Im(v)) C H(G),
we have o(f) = 0.

(b) There exists a non-zero element d(r) € C* such that 7o p = d(7)~! - idgnace ().
The number d(7) is called the formal degree of (W, 7) (it depends on ug).

Proof. We prove (a). Let v € E, v # 0. By the definition of ¢, we have to show that the map

W ®cW — E, (2.18)
w®RE— o (mew)v

vanishes. Letting G act on the first factor of W ®¢ W, we see that (2.18) is G-equivariant by
Lemma 11.9. Now, W ®¢ W is T-isotypic. As (E, o) is not isomorphic to (W, 1), we deduce that
(2.18) is the zero map.

We prove (b). By Proposition 11.5 and Exercise 10.5 it follows that (W,7) is irreducible.
Lemma 11.8 and Proposition 10.8 show that End®(W) = W ®¢ W is an irreducible G x G-
representation. Now, it follows from Schur’s Lemma 11.6 that 701 = a - idgyq=w) for some scalar
a € C. We have to show a # 0. Let f € Im(¢)) € H(G). The Separation Lemma 7.11 provides an
irreducible representation (E,o) € Rep(G) with o(f) # 0. From (a) we deduce (E, o) = (W, 1),
and hence 7o # 0. O

Ezercise. Suppose G is profinite, and let (W, 7) € Rep(G) be an irreducible representation. Show
_ _dimW

that d(r) = TR

(Hint: First, show (n,w) - (§,v) = d(7) [(T(x)&, w) - (n,7(x)v) dug(z) for all v,w € W and
&n e W = W*. For a C-basis wi,...,wqg € W with dual basis n1,...,m4 € W™, compute

d .

Zi,j:1<77i7wi><nja wj) in two ways.)
Proposition 11.11. Suppose G is unimodular and countable at infinity. Fix an irreducible compact
representation (W, 7) € Rep(G) and let K C G be a compact open subgroup. Define

ex,r =d(7) - (YoT)(ex) € H(G).
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(a) ex - is the unique element with T(ex ) = T(ex) and o(ex ) = 0 for each irreducible smooth
representation (E, o) % (W, ).

(b) For each open subgroup H C K one has

€H,r *€Kr = €K, r = €K7 *€H 1,
€H,r * €K = €Kt = €K ¥ €H T,
EK,r*€H = EK .+ = €EH * EK 7.
In particular, ex  is an idempotent.
(c) For each (V,m) € Rep(G) and g € G one has w(g)n(ex ) = m(egrg-1,7)7(9)-
Proof. The uniqueness follows immediately from the Separation Lemma 7.11. Proposition 11.10
shows that ek . has the required properties, whence (a).
The identities in (b) follow from the Separation Lemma 7.11, Proposition 7.4, and from (a). For

example, we have 7(eg r *xex) = 7(emg )T(ex) = T(em)T(ex) = T(eg xex) = T(ex) = 7(ex, ) and
olemrxex) =o(en)o(ex) =0=o(ex,) for all irreducible smooth (E,o) 2 (W, 7).

Let us prove (c). Let H C K be an open subgroup and fix ¢ € G. Using Lemma 7.3 and the
fact that v o 7 is G X G-equivariant, we compute

(Ma)ex ) e = (p(g7 (9N )err) * e = ba(g7") - (p(9)A(9)ex r) * (Mg)en)
=0a(97")  egrg-1,r % €gH = €grg—1,r % EgH.
Now, let (V,7) € Rep(G) and v € V. Choose an open subgroup H C K with v € V. Then
m(g)m(ex,-)v =T (ANg)er,r xem)v = m(egrg-1.+ * gr)v = T(egrg-1 )T (g)v. O
We fix a smooth representation (V,7) of G. For each v € VX, we put
(e )v = m(ek,)v.

Since m(eq,r)v = m(ek - )v for all compact open subgroups H C K (Proposition 11.11(b)), this gives
a well-defined C-linear map
wler): V= V.

We now prove Theorem 11.7 in the following stronger form:

Theorem 11.12. Suppose G is unimodular and countable at infinity. Let (W,T) € Rep(G) be an
irreducible compact representation. Let (V,7) € Rep(G).

(a) The map mw(e;) is a G-equivariant projection.

(b) Let (V',7') € Rep(G) and let « € Homg(V,V'). Then aon(e,) =7n'(es) o au.

(¢) One has a decomposition

V =Immn(e,) ® Kern(e,)

as G-representations, where Im (e is T-isotypic, and (W, 1) does not occur as a subquotient
of Ker(e;).



§11. Compact Representations 47

Proof. Parts (a) and (b) follow from Proposition 11.11(b)/(c); just note that, if v € VX, g € G and
a € Homg(V, V'), then w(g)v € V959" and a(v) € (VK.

Let us prove (c). By (a), we have the decomposition V' = Im7(e,) & Ker w(e,). We show that
Imn(e,) is T-isotypic. Let v € V be arbitrary and fix a compact open subgroup K C G with
v € VE. Consider the diagram

frex, € H(G) xex, C Tm(m: W ocW — H(G))

I I+

w(f *xex v

Note that ey, = d(7)-(moA~toT)(ex) € Im(m). Letting G act only on the first factor of W ®¢ W,
it is clear that W ®¢ W is T-isotypic. As m is G-equivariant, we deduce that Im(m) and hence also
H(G) * e, is T-isotypic. As ¢, is G-equivariant, we deduce that Im(¢,) is T-isotypic. But then,
also Im(7(e,)) = >, ¢y Im(¢,) is T-isotypic.

We now prove that (W, 7) does not occur as a subquotient of Ker w(e;). Since 7(e;) = idyw, it
suffices to show that 7(e,) annihilates any subquotient of Ker w(e,). Solet (V”,7") be a subquotient
of Kerm(e;). Then there exists a G-invariant subspace V' C Ker 7(e,) and surjective G-equivariant

map a: V' —» V”. Then 7" (e;)V" = 7" (e-)a(V') = a(m(e;)V’) = {0}. O
Corollary 11.13. Ewvery compact representation (V, ) € Rep(G) is semisimple.

Proof. Let V' C V be the sum of all irreducible subrepresentations. By Proposition 8.1 it suffices to
prove V! = V. Assume for a contradiction that V/V’ # 0. Let (W, 7) be an irreducible subquotient
of (V/V',7n"). Then n"(e;)(V/V') # {0} by Theorem 11.12 and hence we have 7w(e.)V € V.
But this contradicts the fact that m(e,;)V is 7-isotypic and in particular the sum of its irreducible
subrepresentations (each of which is isomorphic to (W, 1)). O

Corollary 11.14 (Obsolete). Every irreducible compact representation (W, T) is projective and
injective in Rep(Q).

Proof. Note that the functor Rep(G) — Rep(G), (V, ) — m(e,)V is exact. Since (W, 7) is projective
in the category of compact representations by Corollary 11.13, it follows that the functor

Rep(G) — Vectc,
(V,m) — Homg (VV, w(eT)V) = Homg (W, V)

is exact. Hence (W, 7) is projective in Rep(G). A similar argument shows that (W, 7) is injective in
Rep(G). O






Chapter 3

Smooth Representations of p-Adic Groups

Throughout this chapter, we fix a local field F' with valuation ring oz, maximal ideal mp, residue
field xkr, and uniformizer w. Recall the associated discrete valuation

valp: F' —» Z U {0},

which is given by valp(z) =sup{n € Z|z € w"or}.

§12. Decompositions of GL,(F)

Recall the group GL, (F) of invertible n x n-matrices. We have seen in Example 4.4 that GL, (F)
is locally profinite, that GL,,(or) C GL,,(F) is a compact open subgroup, and that the congruence
subgroups

K,, =1+ @™ Mat,, ,,(oF), form > 1,

form a system of fundamental open subgroups of GL, (F), which are normal in GL,(or). In this
section, we will study in detail the structure of GL, (F). We start with describing the maximal
compact subgroups of GL,,(F).

Definition 12.1. A lattice in F™ is a finitely generated op-submodule £ C F™ which generates F'™
as an F-vector space.

Lemma 12.2. Let L C F™ be a lattice. Then there exists an F-basis x1,...,x, € F such that
L=, or.x;. (In particular, L is a free op-module of rank n.)

Proof. Let y1,...,Yyn be a minimal generating system of £ as an op-module. We claim this is
an F-basis of F™. Obviously, it generates F" as a vector space. It is also linearly independent:
Let > a;y; = 0 with a; € F, not all of them zero. Fix j with valg(a;) < valp(a;) for all .
Then Valp(ajflai) > 0 for all 4, and hence y; = — Z#j a;laiyi is an op-linear combination, which
contradicts the fact that yi,..., v, is a minimal set of generators of L. O

Proposition 12.3. GL,(oF) is a mazimal compact (open) subgroup of GLy(F). Every compact
subgroup of GL,(F) is conjugate to a subgroup of GL,(op).

49
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Proof. We first show that GL,,(op) is maximal. Let H C GL,,(F') be a subgroup strictly containing
GL,(oF). Take A = (a;;);; € H~ GL,(oF). Replacing A with A~! if necessary, we find i, jo such
that valp(a;,;,) is negative and minimal among all valp(a;;). Multiplying A with suitable matrices
in GL,,(or), we may assume that ig = 1 = jp and a1; = 0 for all 4 > 1. Then af; is the (1, 1)-entry
of A" € H. It follows that H = J,, @ " Mat, »(or) N H does not admit a finite subcover. Hence,
H is not compact.

Let H C GL,(F) be a compact subgroup. Let ej,...,e, be the standard basis of F™ and
put £ = @?:1 or.e;. Denote L the smallest H-invariant op-module containing £. Then Ly is
generated as an op-module by the image C' of the continuous map

{1,2,...,n} x H— F",
(i, h) — h(e;).

As {1,2,...,n} x H is compact, it follows that C is compact. As F" = J,,c; @ "L is an

open covering, there exists m € Z such that C C w™"L. We deduce that Ly C w™™L is finitely
generated, because or is Noetherian. We have shown that Ly is an H-invariant lattice. By

Lemma 12.2, there exists an F-basis x1,...,%, in F™ with Lg = @?:1 op.x;. Let g: F" — F"
be the F-linear automorphism such that g(z;) = e; viewed as an n X n-matrix with respect to
€i1,...,e,. Then gHg ! stabilizes £ = @', op.e; and is therefore contained in GL,(op). O

We now put G := GL,(F) and K := GL,(oF).
Notation. — Denote X, the symmetric group on n elements. For each o € ¥,, we denote
Wo = (5i70(j))i,j €K

the permutation matriz associated with o7 it is characterized by wye; = e,(;). Here, d;; is the
Kronecker-delta, defined by 6;; := 1 if i = j and d;; := 0 if 7 # j.
— Put
A = {diag(w™,..., @™ ) |m1,...,m, €L} 2 7L",
AT(Q) = AT = {diag(@™,...,@™) € Almy =ma > = my}.
Theorem 12.4 (Cartan decomposition). One has a disjoint decomposition
G= || KXK,
A€AT

that is, A™ is a complete set of representatives of the double coset space K\G/K.

Proof. Let A = (aij)i; € G. Fix ig, jo such that valp(a;,;,) = min{valp(a;;)|1 <1i,j <n}. Re-
placing A by w(, i) Aw(y j,) if necessary, we may assume that iq = jo = n. Write a,, = rw™", for
x € 0f. Then B = diag(1,...,1,27!) € K and hence, replacing A with AB if necessary, we may
assume a,, = w". Now note that

Tan 01n 0 , ’
En—l " : * En—l S A :
- Z;:n anfl,n 0 0

0----0 ‘ 1 \anl st lGpn—1 ‘ Ann \_% """ 0‘7;,:#—1 ‘ 1/ \O ....... 0 ‘ wmn/
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lies in KAK and every entry of A’ has valuation > m,,. By induction, we see that K AK contains

a matrix of the form diag(w™,...,@™") with m; > mg = -+ = m,.
It remains to see that the union in the assertion is disjoint. Let my,...,m,,m},...,m), € Z
such that
oMt w’”/l
K K=K K
w'n wmil

It suffices to find o € X,, with m; = m;(i) for all 1 <i < n. Let A= (a;);; € K such that

X = A €K

!
wmn wfmn

We have 0 = valp(det(X)) = >0, my; + valp(det(A)) — Yoi mi = >0
the Leibniz formula

1m; — Y oi_ mi. Recall
det(A) = Z Sen(0) - A1(1) "+ Ano(n) € 0%.
oEX,

As A € K, we find 0 € X, with a,,;) € of for all i. Since X = (z45);; € K, we have

wm’i_m;@)aw(i) = Zj,(;) € o, which shows m; — m;(i) > 0, for all 4. Now, >  (m; — m;(i)) =

Sorim— >, my, ;) = 0, so we conclude m; = m], ;) for all 4. This finishes the proof. O

Ezercise (Elementary divisor theorem for or). Let £y, Lo be two op-lattices in F. Show that there
is an op-basis eq,...,e, of £; and uniquely determined integers m; > msy > -+ = m, such that
n™ey, ..., M e, is an op-basis of Lo.

Corollary 12.5. Let H C G = GL,(F) be a closed subgroup. Then H is countable at infinity.
Moreover, the center Z(H) acts through a character on every irreducible smooth H-representation.

Proof. Since H/H N K C G/K, it suffices to show that G is countable at infinity. By the Cartan
decomposition 12.4, we have G = | |y y+ KAK C Uyea+ Urer/rr-1nx) FAK. As AT is countable

and each K/( AKX~ N K) is finite (since K is compact), it follows that G/K is countable. The last
assertion is now a consequence of Schur’s Lemma 11.6. [

We now consider the subgroups
B =

of G = GL,(F). Note that U is a normal subgroup of B, and B=TU = UT. Put
W={w,|ceX,} =5,.
Definition 12.6. We call

— B the standard Borel subgroup of G;

— T the standard mazimal torus of G;
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— U the unipotent radical of B and
— W the Weyl group of G (with respect to T).

Theorem 12.7 (Iwasawa decomposition). We have G = KB = BK. In particular, G/B is
compact.

Proof. Let A = (a;j)i,; € G. We need to find k € K such that kA € B. Since W C K, we find
o € %, such that valp(as(1),1) < valp(a;;) for all i. Replacing A with w,-14, we may assume
valg(a11) < valg(a;1) for all 4. As before, we have

/1 ‘0....0\ /au\au----am\
_% B 0
:11 Enil A= A/ € KA.
—an1 0
a1

By induction on n, we find k¥ € K with kA € B, which proves G = KB. Now, G = G~! =
(KB)"! = B7'K~! = BK.
Finally, note that we have a continuous surjection K — G/B. As K is compact, so is G/B. O

Lemma 12.8. Let No(T) = {g € G |gTg~' =T} be the normalizer of T in G. Then Ng(T)/T =
W.

Proof. We need to show Ng(T) = TW = WT. It is clear that W normalizes T. Conversely, let
a = (a;j)i,; € Ng(T). Assume for a contradiction that there exists 1 < ¢ < n and ji # j2 such
that a; j, # 0 # a; j,. Choose ¢t = diag(t1,...,t,) € T with t;, # ¢;,. By assumption, there exists
t' = diag(t},...,t,) € T with at = t'a. We compute

i, 51

@iyt = (at)ml = (t a)%]l =taij, = . tiQi
Qg5
i,
= Aty = Qg
Q4,5
Since a; j, # 0, this means t;, = ¢;, which contradicts ¢;, # ¢;,. Hence a € WT. O

Theorem 12.9 (Bruhat decomposition). One has a disjoint decomposition

G= || BuwB.
weW

Moreover, BwB = UwB = BwU for all w € W.

Proof. Note that U is generated by the elementary matrices e;j(z) for 1 < i< j<nandz € F,
given by
1, ifr=s,
(eij(x))ns =qz, if (T7S) = (7’7])7
0, otherwise.
Now verify that any element of G can be transformed into an element of TV by multiplying

with elementary matrices from the left and right. Since each w € W normalizes T, and since
B=TU =UT, we have BwuB = UwB = BwU.
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It remains to prove Bw,B # Bw,B whenever ¢ # 7 in %,,. Assume otherwise, and let u € U
such that w,uw;? € B. Fix i such that o(i) > 7(i). The (o(i),7(i))-th entry of wyuw; ! then

equals u; = 1, which contradicts the fact that w,uw ! € B. O
Definition 12.10. A partition of n € Z>; is a tuple n = (nq,na,...,n,), where ny,...,n, € Zx;
such that ny +---+n, =n. Iif n/ = (n},...,n.) is another partition of n, we write n < n’ if there
are integers 0 = rg < 71 < ro < --- < ry = r such that n; = Z;;Ti—1+1 n; for 1 < i <'s. This

defines a partial order on the set of all partitions of n. For example, we have
(1,2,3,4) < (3,3,4) < (3,7) < (10)

as partitions of 10.

Let n = (n1,...,n,) be a partition of n. The subgroup P, of G consisting of matrices of the
form
ny (A Apgeeeee Ay,
ng| 0, .. o
: '~,Ar—1,r
np\ O-vvnnnl 0 A,

where Ay € GL,, (F) for all 1 < i < r, and Aj; € Mat,, ,,(F) for all 1 <i < j <7, is called a
standard parabolic subgroup of shape n.
The subgroup U, of P, consisting of the matrices of the form

ny [ En, Ajgeoonnes Ay,
: -.Arfl,r ’
LT W) PR 0 E,.

where E,, € GL,,(F) denotes the identity matrix, is called the unipotent radical of P,.
The subgroup M,, of P, consisting of the block diagonal matrices

ni All 0----.. 0

n9 0 ’
oo

nr O ..... 0 AT‘T‘

where A;; € GL,,,(F) for all 1 <14 < r, is called the standard Levi subgroup of P,.

We denote by P, and U, the transpose of P, and U, respectively. We call P,, the opposite
parabolic of P,.

A subgroup P of G is called parabolic if there exists g € G such that gPg
Similarly, a subgroup M of G is called a Levi subgroup if there exists g € G such that gMg~
standard Levi subgroup.

We observe the following easy facts:

~1 is standard parabolic.

Lisa

- M, = GL,,(F) x -+ x GL,, (F).
— U, is a normal subgroup in P, and P, = M,U,, = U,M,, and M, NU,, = {1}.
- BCP,, T C M, are subgroups, and U,, C U is a normal subgroup.
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— More generally, if n < n’, then P, C P/, M,, C M, and U,, 2O U,,. In this case, we have
P,NM, =M, - (Uﬂﬁ Mﬂ/).

We call P, N M, a standard parabolic subgroup of M,,; with standard Levi subgroup M,, and
unipotent radical U,, N M,,.

- P,=M,U, =U,M,.

- P,NP,=M,.

Example 12.11. (a) Py,..1) = B, Uq,...1) = U, and My 1) = T. Further, F(Lm’l) consists
of the lower triangular matrices in G.

Exercise 12.12.  (a) Let g € G such that ¢Tg~! C B. Show that ¢gTg~* = bTb~! for some
b € B. (Hint: Let t .= diag(t1,...,t,) € T such that ¢; # ¢; for i # j. Show T = Zg(t) =
{x € G|zt = tx}. Deduce that it suffices to find b € B with gtg~! € bTb~!. Next, show that
gtg~! stabilizes the subspaces V; :== Fej +---+ Fe; C F" forall 1 <i < n (where eq,..., e,
denotes the standard basis of F). Show that there exists a permutation o € ¥,, such that
Vi=Fges1)® - @ Fgey() is the eigenspace decomposition for gtg~'. Deduce gw, € B and
conclude.)

(b) Show that the set {gBg~* ’g € G and gBg~' D T} is in bijection with W (and in particular
finite). (Hint: (a) and Lemma 12.8.)

(¢) Let M C G be a standard Levi subgroup. Let P(M) be the set of parabolic subgroups of G
with Levi subgroup M. Show that P(M) is finite.

(d) Let M C G be a standard Levi subgroup and put W(M) := Ng(M)/M, where Ng(M) =
{g e ! gMg=! = M} is the normalizer of M in G. Show that the group homomorphism
Ne(M)NW — W(M) is surjective (what is the kernel?). In particular, W(M) is finite. (Hint:
Let g € Ng(M) so that gT'g~! C M. Using the strategy in (a), show that there exists m € M
such that mgT(mg)~t =T.)

We fix a partition n = (nq,...,n,) of n.
Lemma 12.13. The multiplication map
U, x M, xU, — G
is injective (but not a group homomorphism).
Proof. Take wy,us € Uﬂ, my, Mg € My, and uq,us € Uy, such that
UITMIUT = UMaU.

Then ﬂz_lﬂl = (mquul_lmZ_l) . (mzml_l) € ﬁﬂﬂ P, = {1}. We deduce @ = Us. Since M,, NU,, =
{1}, we further deduce m; = msy and mquul_lmgl = 1. The latter is equivalent to u; = us. O

Notation 12.14. (a) If n’ = (nf,...,n}) is a partition of n, we define

A++(Mﬂ/) = {diag(wmlEn/l,...,wmsEng) €At ﬂZ(MQ/) | mip>Mmg > - > ms}.
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(b) More generally, let n’ =
n’ with a tuple (n},...,n

(
AT (M, My) = {diag(Ar, ..., A) | X € ATF(M,y) forall 1 <i <r}.

o2
(C e )
eATT (M(Q,l,l)v M(2,2))~

L)

Proposition 12.15. Let K, = 1 +@™ Mat,, ,,(or) be the m-th congruence subgroup, where m > 1.
Let n = (ny,...,n,) be a partition of n. Put K}, = K,,NU,, KO, = K,,NM,, and K, = K,,NU,.

(a) Ky = KIKOK- = K- KO K

m m m m m m’

ni,...,n,) <n=(ny,...,n.) be partitions of n. We may identify
), where each n/ is a partition of n;. We define

For example, we have

(b) For all X € AT we have A\AK A" C Kf and A\K, A7 D K.;
(c) Letn’ = (n},...,n.) < n be a partition of n and let
PYS A++(Mﬂ/).

Then (; NEK AT = {1} = N, A 'K, \* as well as U, A\ KA = U, and U, NK,,A\"" =U,.

Proof. We first prove (b) and (c¢) for K,!; the result for K, is obtained by passing to transpose
matrices. Let A = diag(@™!,...,@™") € AT and A = E, + (a;;)1<i<j<n € K,},. We compute
MA =B, + (@™ ™ a;j)icj € Bn + @™ Maty, ,(0F).
This implies (b).
Let now A\ = diag(@™ E,;,..., @™ Ey) € A‘*“"(Mﬂ
where A;; € w™ Matnr_m{_ (o) (this is possible, because n/

). Let A = E, + (Ajj)i<icj<s € K,
< n). For all [ € Z we compute

NANT = B, + (&™) Ay)._ € B, + @™ Maty, ,,(oF).

1<J
Then (1,50 MK C MNiso Km+1 = {1}. It remains to show that each element A = E, +
(Aij)i<i<j<s of Uy lies in some ALK EAL We find k € Z such that Aij € w” Matn;’ng (op) for all
i < j. Then N~ *AN=(m=k) ¢ K, NU, = K, which proves (c).

We now prove (a). Let A = (Aij)icij<r € Km with Aj; € @™ Maty,, n;(or) for i # j and
A, € E,, + @™ Mat,, ,,(op) for all i. We compute

E,, ‘ [ 0 \ /A11 ‘ A12~--~A1T\ / n1 ‘ A11A12~--~—A11A17\

— Ay Al | B, 0 En,
— A A7) "B, 0 o
€ K, AK.

Proceeding by induction, we find A € K, KO K. Hence, K,, = K, K% K I,. Passing to the inverses
also shows K, = K+K0 K. O

m>-TmTTm”
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Remark 12.16. Proposition 12.15(b) shows that U = U, . 1) is the union of its compact open

subgroups. By Exercise 6.5, the modulus character of U (and any of its closed subgroups) is trivial.

Definition 12.17. Let n = (n1,...,n,) be a partition of n. Let M = M, = ]._, GL,(F) be the
d

corresponding Levi subgroup of G. Let det,,: [[, GL,, (F) 1, der, [1, F*. We put

MO = de@1 <H 0?) = H GL,, (F)°, where GL,_(F)° = det™'(0}).
s s=1

Let Z(M) = [[._, F* be the center of M. We make the following easy observations:

— Every compact subgroup H of M is contained in MY, because det,,(H) is a compact subgroup
of [I, F* 2], (w” x o}) and hence contained in [], of.

— M° is a normal subgroup of M, and M/M° = [[ F*/o} = Z" and M/Z(M)M° =
[1._, Z/nsZ (for the latter it suffices to observe det(Z(GL,, (F))GL,_(F)°) = (F*)"oy =

nsZ X
w™” x oy, for all s).

Proposition 12.18. Let M be a Levi subgroup of G.

(a) The subgroup SL,(F) := det ' ({1}) C GL,(F) is generated as a group by U and U.
(b) M° is generated by all compact subgroups of M.

(c) M° and M are unimodular.

Proof. By GauR’ algorithm, it is clear that SL,(F) is generated by U, U, and T" := T' N SL,,(F).
Note that for each t = diag(ty,to,...,t,) € T' we have

i

n—1
t= ] diag(1,.... 1, &, 57", 1,...,1),
i=1

where s; =ty ---t; foralli =1,...,n — 1. We are therefore reduced to the case n = 2 and have to

show that ( 0 ) lies in the group generated by U and U. For t = 1 this is trivial, and for ¢ # 1

6 (96 0 6 )

This proves (a). Since every element of U and U is contained in a compact subgroup (Remark 12.16),
part (b) follows from (a) and the fact that M° = [[;_, GL,, (oF) SLy, (F).

Let dpr: M — RZ, be the modulus character of M. Since M? is generated by its compact
subgroups, we have dy;(M°) = {1}. It is clear that §p;(Z(M)) = {1}. Hence &ys factors through
a character [],_, Z/n;Z = M/Z(M)M°® — RZ,, which is trivial since R, contains no non-trivial
finite subgroups. Hence ), = 1. O

we have

Ezercise. Let (V,m) € Rep(GL,(F)) be a finite dimensional irreducible smooth representation.
Show that 7 = x o det, where x: F* — C* is a smooth character. (Hint: Use Proposition 12.15 to
show that U and U act trivially on V.)
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§13. The structure of H(G, K,,)

From now on, we assume G = M,, C GL,(F) for some partition n = (ng,...,n,) of n. Put
K= GLn(OF> NG.

Our next goal will be to show that every irreducible smooth representation of G is admissible.
Since the m-th congruence subgroups K, = (E,, + @w™ Mat,, ,(or)) N G form a fundamental basis
of open compact subgroups, it suffices to show that for every irreducible (V, 1) € Rep(G) the space
V&m is finite dimensional, for all m € Zx1. By Theorem 7.9 we have to show that for all m € Zx4
the simple H(G, K,,)-modules have finite dimension over C. We thus need to study the structure
of H(G, K,,).

We fix a left Haar measure pg on G.

Lemma 13.1. For g € G we put
Cg = e g, = VOUKmgKm;ig) ™" - 1k, g5, -

The set {cg}gek,\G/K,, 15 a C-basis of H(G, Ky,). Moreover, if KpgKpmg' Km = Kngg' K, then

Cg ¥ Cg' = Cgg’-

Proof. The first assertion is clear from Proposition 7.4. Assume now that K,,9K,,¢'K,, =
K99 K. Let h € G. The map z — 1k, 4k, () - 1k, ¢k, (x7'h) is the characteristic func-
tion 1g, gk, .AhK,.g'~1K,,: it is non-zero precisely when h € K,,gK,,g'K,,. Hence, we have

(1K7ngK1n * 1ng’Km)(h) = VO1(ngKm m thg/_le)

Write K, gK,, = |_|?i1 9iK,, and K,,,¢g'K,, = U;_lngl g;-Km7 where d, vol(K,,) = vol(K,,gK,,) and

dg vol(K ) = vol(K,,g' K,r,) because g is left invariant. Observe hK,,g' 1K, = |_|j9='1 thg;-_l.
By counting the left cosets in K,,gK,, N hK,,g' ' K,,, we compute

Vol(ngKm N thg'*le) vol(K ph K o)
=#{i|gi € thg;_1 for some j} - vol(K, h Ky, ) vol(Kop,)
= #{(i.7) | 9:9; € KKy} - vOl(K K ) vOl(Ky,)
= #{(i,§) | 9:9}; € KmhKp} - vol(K,,)?
= dydy - vol(Kpm)?
= vol(K;ngK ) - vol(K g Ko).

Here, the third equality uses the fact that vol (ngKm NhK,g *le) only depends on the double
coset K,,hK,,, and the fourth equality uses K,,9K,,¢'K,, = K,;,99' K,,. Finally, we have

VOl( K g Ko N WK g~ Ky
VOl(K g K ) vOl( K g' Ky,
1

= .1 ’ = ’
VOl(Kmth) Kmgg Km(h’) Cqg (h’)

(cq x cg)(h) =

for all h € G. O
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Recall that K, is a normal subgroup of K. Hence H(K, K,,) is a subalgebra of H(G, K,,,) of
dimension [K : K,,].

Theorem 13.2. Put C = (c\ | A € AT(GQ)) C H(G, K,,,), where AT(G) == [];_; AT(GLy,(F)).
Then:

(a) H(G, Kpn) = H(K, Km)CH(K, Kn).

(b) C is a commutative, finitely generated algebra. In fact, we have
Can = Cx * Cy for all \, N € AT. (3.1)
Proof. Let g € G. By the Cartan decomposition 12.4 applied to each factor of G, we find k, k' € K
and A € AT (G) with g = kAK’. We have
K kMK, = K kK AK, and Kk Ky, = K kAK K Ko,
because K,, C K is normal. By Lemma 13.1, we have
Ck % C\ % Cly = Cl) % Cly = Cpak! = Cg.

This proves (a). We now prove (b). Note that each AT(GL,,_(F)) is generated as a commutative
monoid by the elements

Asi = diag(w,...,@,1,...,1) € GL,,(F) C GL,(F), (3.2)
——

7 times

for 1 < i < ng, and )\;}L To finish the proof, it remains to show (3.1). Again by Lemma 13.1 it
suffices to show
K 2K N Ky = K DN K, (3.3)
Applying Proposition 12.15 for n = (1,...,1) to each factor of G, we have
MK N = MK KO K, N = (AKIAH AKX - (VLK N) € K AV K,

m>TTmTTm

(Note that K2, C T and A\, X € T, and T is commutative.) We deduce “C” in (3.3). The other
inclusion is trivial. O

Fix A € AT(G). For each (V,7) € Rep(G) we are going to describe the kernel of the maps
mley): VEn — yEm for I € Zxy.

Let n’ < n be the unique partition for which A € AT (M,,, G) (see Notation 12.14). Put N =
U, N G. Recall the Jacquet functor from Exercise 9.4(b): It is the functor

Jn: Rep(Py N G) — Rep(M,y),
(VV, 0’) — (WN7JN(O')),

where we set Wy = W/W(N) and W(N) = (w — o(z)w | x € N,w € W).
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Proposition 13.3. Let (V,7) € Rep(G). Then

[ Kerm(cy) nVE = V(N)n v,

>0

Proof. By Proposition 12.15(c) (applied with n’), we have N = Ul20 Ny, where each N; := ALK F !
is a compact open subgroup of N. Note that V(N) = U5,V (V). By Lemma 7.8 we have
V(N;) = Kermjn(en, ). Hence, given any v € VEm we have to show

m(ex)v =0 <= mn(en)v=0. (3.4)
Write AT KA = |_|;.i:1 u; K;t. By Proposition 12.15 we have K,,, = K; KO K and A"/ K9 K\ C
K,,. Now, observe that

d
K MK, =AM K NK, = MKV EK, = |_| N Ko,
i=1

is a disjoint union (if u; € u; K,,, then uj_lulv € K,, NN = K}, hence u; = u;). We now compute

As m(\!) is an isomorphism, this shows (3.4), which finishes the proof. O

The last result suggests that we should look at the Jacquet functor Jy in more detail.

§14. Parabolic Induction and Parabolic Restriction

Recall G = M,, for some partition n = (nq,...,n,) of n. We fix a standard parabolic subgroup
P = MN with Levi subgroup M and unipotent radical N, corresponding to some partition n’ < n.
(This means P = P,y NG, M = My, NG and N = Uy NG.) Recall the modulus character
dp: P — RZ,, which is given as follows: Choose any compact open subgroup H C P; then
Sp(g) = [gHg™ ! : H] (generalized index) for each g € P. See Exercise 6.5. As R~ admits unique
square roots, the character

5% P — R%,,

g+ \/dp(9)
is well-defined. We denote (5;1/ 2 the inverse of (511:,/ 2,
Lemma 14.1. One has (6p)|y = 1. For all m € M one has

5p(m)=[mKNm71 : Ky, where Ky = K1 N N.
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Proof. By Proposition 12.15, every u € N is contained in a compact subgroup of P. Hence, by
Exercise 6.5 we have dp(u) = 1.
In order to prove the last assertion, we use the following general

Fact. Let P be a topological group, and let N, M C P be closed subgroups such that N < P is
normal and the composite M < P —» P/N is an isomorphism. Let H' C H C P be compact open
subgroups. Put Hyy = HN M and Hy := H N N, and similarly for H}, and H),. Suppose that
H=HyHy and H' = Hj;H},. Then

[H:H'|=[Hy:H)y| [Hy : Hy)-

Proof of the Fact. Write Hy; = |_|?f1 m;H},; and Hy = |_|dN ujH), so that dyy = [Hy : Hj) and

=1
dy = [Hy : Hj]. The claim amounts to showing that we have a disjoint union

dy dn

H= |_| |_| miu; H'. (3.5)

i=1j=1
Note that H}, normalizes Hy and H},. Hence
H = HyHy = | miHy Hy = | JmiHyHy = | Jmiw; HyHy = | miu H'.
i i 4,J 0,J
It remains to prove that (3.5) is disjoint. Suppose m;u; H' = myujH'. Fix k' € H' with m;u; =
myujh', and write b’ = bl by with b, € H}, and b’y € Hy. Then
mg - Uu; = mi/uj/hﬁwh' = (mz/hgw) . (hﬁwuj/h’z\j[lhﬁv), in HAIHN-
Since M NN = {1}, we have m; = myh}; and u; = h?wuj/hﬁlhg\,. But by assumption, we have

i =14 and h}; =1, and from the resulting equality u; = u;hly we deduce j = j'. Hence, the union
in (3.5) is indeed disjoint. O

Write Kp = K1 NP and Ky = K1 N M. Then Kp = Ky Ky, and for each m € M we
have mKpm™' = (mKym™!) - (mKym™') and Ky = Kp N mKpm~™ = K}, - Ky, where
Ky =Ky NnmKym™" and Ky = Ky NmKym~'. Note that M = GLy (F) x --- x GL,/, (F)
is unimodular by Proposition 12.18. We now compute

5p(m) mKpm=': Kp]  [mKym™': Kj]- [mKym™!: K}
m) = =
i [Kp: Kp] (K K] [K K}
=6y (m) - ImEKym™ : Kyl = mKym™" : Ky]. O

Definition 14.2. (a) For (W, o) € Rep(M), the representation

iG(W,0) == Ind§ (W, 6} ® Inf¥ o)
JH C G compact open such that
=S f:G—=W/| flgh)=f(g) forall gc G, h € H, and
flzg) =61/ %(x)o(x)f(g) forall g € G, w € P

is smooth, where G acts on f € i%(W,0) by right translation: (gf)(¢’) = f(g'g) for all
9.9 € G. We call i%(W, o) the representation parabolically induced from (W, o).
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(b) For (V,m) € Rep(G), the M-representation

rSQ(Vim) = (Vi In (65" @ 7))

is smooth. (See also Exercise 9.4). We call r%(V, ) the representation parabolically restricted
from (V, ).

The parabolic induction functor 4% : Rep(M) — Rep(G) allows us to construct new smooth
G-representations from smooth representations of the “smaller” group M. This breaks up the
classification of irreducible smooth representations into two steps:

(i) Classify the irreducible smooth representations arising as a subquotient of i% (W, o) for some
parabolic subgroup P = M N of G and some (W, o) € Rep(M).
(ii) Classify the irreducible smooth representations which are not a subquotient of a parabolically

induced representation.

The representations falling into case (ii), called supercuspidal, are to be thought of as the “building
blocks” of smooth representations in the sense that knowledge of the supercuspidal representations (of
all Levi subgroups of G) and of the parabolic induction functors provides a complete understanding
of all irreducible smooth representations.

The following properties of ig and r$ will be essential in the following:

Theorem 14.3. Let P = M N be a standard parabolic subgroup of G corresponding to a partition
n' <n. Let (V,7) € Rep(G) and (W,0) € Rep(M).

(a) There is a natural C-linear isomorphism
Hom s (r§(V, ), (W, 0)) = Home ((V, 7), 3% (W, 0)).

In other words: rg 1s left adjoint to ig.
(b) The functors ig and r$§ are ezact.
(c) If (V,7) € Rep(G) is finitely generated, then r$(V, ) € Rep(M) is finitely generated.
(d) If (W, o) is admissible, then i%(W, o) is admissible.

(e) zp and r$ are transitive. More concretely, let n’ < n” < n be another partition. Put
Q=PFP,NG and L = M,» so that Q 2 P and L O M. Then there are natural isomorphisms

"

SW,0) =G ibo (W,0)  and  r$(V,m) = vk, (V7).
Proof. For (a) we compute

HomM(rgmo) :HomA[(JN(671/2®7T|p) )

=~ Homp (0, 12 g p, Infp o) (Exercise 9.4(b))
(7r|p, 1/2®InfM )

(m, md$ (6 1/2 ® Infy o)) (Proposition 9.3)
= Homg (7r zp )

= Homp

= Homg
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—-1/2

We now prove (b). For the exactness of 7% = Jyo(6p /" ® _)o Res$, we note that the functors

6;1/2 ® _ and Res$ are exact. It remains to show that Jy: Rep(P) — Rep(M) is exact. Let

V1) & (vom) L (v ") (3.6)
be an exact sequence in Rep(P). We have to show that Jy (V') Inle), In(V) —= ), In(V") is
exact, that is, Im(Jx(¢)) = Ker(Jy (). We have Jy(¢) o In(¢) = Jn (¢ o ¢) = 0, which shows
“C”. For the reverse inclusion, let v € V such that Jy(1)(v+V(N)) = 0. This means ¢(v) € V" (N).
By Proposition 12.15, N is an increasing union of compact open subgroups. Hence, there exists a
compact open subgroup H C N such that ¢(v) € V”(H). In other words: Jy(¢)(v+V (H)) = 0. By
Lemma 7.8 we have Jy = mn(eq) = (_)", which is exact by Lemma 5.8. Hence, there exists v' € V'
such that Jg(0)(v'+V/(H)) = v+ V(H), that is, ¢(v')—v € V(H). As V(H) C V(N), this implies
p(v') —v € V(N) and hence Jy(¢)(v' +V'(N)) = v—!—V( ). This shows Im(Jn (¢)) = Ker(Jn ().

We now prove that 14 = Ind% 0(5113/ ’® _)oInf¥ is exact. We observe that (51/ 2 and Inf¥
are exact. It remains to show that Ind%: Rep( ) = Rep(G) is exact. Consider an exact sequence

Ind§
as in (3.6). We have to show that Ind% V' —=% Ind§ V —~Y md$ V" is exact. By Exercise 5.9
it suffices to show that, given any compact open subgroup H C G, the induced sequence

ndP

(ndGVHH — (ndEV)H — (IndG V")H (3.7)

is exact. By the Mackey decomposition (Proposition 9.5) we have

H
(IndgV)H%( H Ind ~1pgnH Yx V) = H (Ind ~1pgnH Yx V)H (3.8)

geEP\G/H geEP\G/H
S R O |
geEP\G/H geEP\G/H

where the second isomorphism is an instance of Frobenius reciprocity (Proposition 9.3); similarly
for (Ind§ V') and (Ind$ V)" . Now, the sequence (3.7) becomes

H (V/)PﬁgHg_l N H VPﬂgHg N H V/l PNngHg™
geP\G/H geP\G/H geP\G/H

PngHg™!

which is exact, because () is exact by Lemma 5.8." This shows that Ind$ is exact.

We prove (c¢). Let vq,...,v4 € V which generate (V,7) as a G-representation. Fix a compact
open subgroup H C G such that vy,...,v4 € VH. By the Iwasawa decomposition 12.7, the space
P\G is compact and hence P\G/H is finite. Let gh e ,gk be a representing system for P\G/H.

Then {7m(g;)v; |1 <i<k,1<j<d} generates (V, (5 ’® 7 p) as a P-representation. But then
{m(g:)v; + V(N )}U generate rP(V, ) = (Vn, JN(5 ’® m|p)) as an M-representation.

We now prove (d). Assume (W,o) € Rep(M) is admissible. Let H C G be a compact open
subgroup. We have to show that (Ind$ W)™ is finite dimensional. Since clearly (W, 5}3/ > @ InfY o)

1Note that P\G/H is finite by the Iwasawa decomposition 12.7, and hence the products are finite. But this is
not needed here.
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is admissible, the spaces WFN9H 97" are finite dimensional for all g € G. By the Iwasawa decom-
position 12.7, P\G/H is finite. Now, (3.8) shows that (Ind% W)# is a finite product of finite
dimensional vector spaces, hence itself finite dimensional. Thus, i%(W, 0) is admissible.

Finally, we prove (e). Let @ 2 P be a parabolic subgroup of G with Levi L and unipotent radical
R. Note that N € @ = LR and R < N is a normal subgroup, so that we have N = (NN L) - R.
For every m € M we have by Lemma 14.1 (and the fact in its proof)

(5p(m) = [mKNmfl : KN] = [mKNanfl : KNﬁL] . [mKRm71 : KR] = 5me(m) . 5Q(m)

Let (V,7) € Rep(G). We have to show that the maps

14
L,
IN(V) 4 > InnL(Jr(V))

factor through the dashed isomorphism. The kernel of f; is V(N) and the kernel of fo is given
by V(NNL)+ V(R). Since N = (NNL)-R, we have V(NNL)+ V(R) = V(N). [Indeed,
“C” is clear, and for each u = 2y € N with x € NN L and y € R, we have v — w(u)v =
(v—=m(y)v)+ (r(y)v — 7(z)m(y)v) € V(NN L)+ V(R), which shows “D".] We thus have a canonical
isomorphism

IN(V) = Inar(Jr(V))
given by v + V(N) — (v + V(R)) + Jr(V)(N N L). Since also dp(m) = dpar(m) - dg(m) for all
m € M, this isomorphism induces the canonical isomorphism r$® — rk S 7.

Now, for all (W, o) € Rep(M) and (V,7) € Rep(G) we have by (a) natural isomorphisms
Homg (, zg ihar o) = Hom,, (rg T, 5L o) = Homyy ('r}L;ﬂL 'rg ™,0)
=~ Homjy (rg , 0) =~ Homg (77, iIGD a)

By the Yoneda lemma below, we deduce a natural isomorphism zg iILgm = ig . O

Yoneda Lemma 14.4. Let o/ be a category, and fix two objects A, B € /. Suppose that there is
a natural bijection
ac: Hom (C, A) — Hom,, (C, B)

for each C € o. Then aa(ida): A — B is an isomorphism in < .

Proof. Since ap is surjective, there exists a morphism ¢: B — A with ag(¢)) = idg. The naturality
means that for every morphism ¢: C — C’ in &/ the diagram

Hom, (C’, A) g Hom, (C', B)

ﬂ J "

Homg (C, A) —5-— Homy(C, B)

is commutative, i.e., ac(f o @) = ac/(f) o ¢ for all f: C' — A.

By naturality we have a4(ida) o ¥ = ap(ida otp) = ap(¢) = idg. Conversely, we compute
as(oas(ida)) = ap(y) o aa(ida) = idpoaa(ida) = aa(ida). As ay is injective, we deduce
Yoas(ids) =ida. Hence, as(id4) is an isomorphism with inverse . O
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§15. Cuspidal Representations and Uniform Admissibility
Recall G = M, for some partition n = (ny,...,n,) of n and K = GL,,(or) N G.

Definition 15.1. A representation (V,7) € Rep(G) is called cuspidal if 7G(V,7) = {0} for every
standard parabolic subgroup P = M N C G.
Note that the condition % 7 = {0} is equivalent to Jyx (V) = {0} (and hence to V = V(N)).

Remark. (a) As r$ is exact by Theorem 14.3(b), it follows that every subquotient of a cuspidal
representation is cuspidal.

(b) If (V,7) is cuspidal, then 7%(V,7) = {0} for every (not necessarily standard) parabolic
subgroup P = M N C G. Indeed, if g € G is such that gPg~! is a standard parabolic, then
V=n(g (V) =n(g7")(V(gNg™)) C V(N).

(c) If (V,7) € Rep(QG) satisfies 7% (V, ) = {0} for every maximal parabolic subgroup P C G, then
(V,7) is cuspidal. This follows at once from the fact that r$ is transitive (Theorem 14.3(e)).

The following important result makes precise the assertion that the cuspidal representations are
the “building blocks” of smooth representations.

Lemma 15.2. Let (V,7) € Rep(G) be irreducible. There exists a standard parabolic subgroup
P = MN of G and an irreducible cuspidal representation (W, 7) € Rep(M) together with a G-
equivariant embedding

(V,m) < i5(W,7)

Proof. Let P = M N be a minimal standard parabolic subgroup with Jy (V) # {0}. Then 7 7 is
cuspidal by Theorem 14.3(e) and the minimality of P. As 7 is finitely generated, so is 7% 7 (Theo-
rem 14.3(c)). Hence, there exists an irreducible quotient r& 7 —» 7 in Rep(M). By Theorem 14.3(a),
we obtain a non-zero G-equivariant map 7w — ig 7, which is injective since 7 is irreducible. O

Recall the subgroup G := det, ' ([T;_, 05) € G and the center Z = Z(G) = [[\_, F* of G.
Theorem 15.3. Let (V,7) € Rep(G). The following are equivalent:

(a) (V,7) is cuspidal.

(b) The functions fr,: G — V (Definition 11.2) have compact support modulo Z(G) for all
compact open subgroups H C G and all v € V ~ {0}.

(¢) The matriz coefficients of (V,m) (Definition 11.8) have compact support modulo Z(G).
(d) (V,m|qo) is compact (Definition 11.2).

Proof. “(a) = (b)”: Let H C G and v € V as in (b). Choose m > 1 such that K,, C H and
v € VEn_ Then Supp fr.» € Supp fk,,» and hence we may assume from the start that H = K,,

and v € VH. Then f,(g9) = m(eg)m(97")v = w(egy-1)v for all g € G. Consider the function

bp: AT(G) — VI,

A— mlen)v = fao(A71),
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where ¢y = egag. We have G = KAT(G)K by the Cartan decomposition 12.4. Note that
m(em)m(k) = w(k)m(eg) for all k € K (as H is normal in K). For any g = k' Ak with k, k' € K and
A€ AY(G), we have fr,(97") = 7(K') fr,r(k)o(A™") = T(K")dr(r)o(N) and hence

(Supp frro) € |J K SuppdnpK.
keK/H

It therefore suffices to show that Supp ¢, is finite modulo Z, for all v € V#. Fix any v € V.
Given v € AT (G) \ Z, let P, = M, U, be the unique (proper) parabolic subgroup of G for which
v e AT (M,,G) (see Notation 12.14). By Proposition 13.3 and since (V, ) is cuspidal, we have

V=V v, =vTn (] Kera(e,).
k>0
Hence, there exists k, € Zx such that ¢,(v*) = 0 for all k > k,,. Recall the elements A ; from (3.2);
for every A € AT(G) we then have A = [],_; [T, )\f;—’:‘*(A) for uniquely determined ds;_ ()\) € Zxo,
for 1 < iy < ng, and ds pn, () € Z. Define ky = max{k:Asﬂis 1<s<nl<i,< ns} and then

X ={Ae AT (G)]|dsi,(A\) < ko forall 1 <i;<ng,alll<s<r}.

Clearly, #(X/Z N X) = kOZZZI(nS—l) is finite. If A € AT(G) \ X, then \ = )\’)\jfi'i()‘), for some
N € AT(GQ), some 1 < s <rand1<i<ngwith ds;(\) > ko. By (3.1) we have
ds,i(>‘)

Po(A) = m(en)pu(Ag" ) = 0.
It follows that Supp ¢, C X is finite modulo Z.

“(b) = (¢)” Let & € V and v € V, both non-zero. Let H C G be a compact open subgroup
such that € € V. Then ¢ = £ o w(epr) and hence

<£7va(g)> = <€>7T(€H)7T(gil)v> = <£77T(971),U> = m&,v(g)
for all g € G. We deduce Supp me¢ ., C Supp f,v-

“le) = (d)™ Let € € V and v € V, both non-zero. By assumption, the matrix coefficient
me¢ , has compact support modulo Z. Fix a compact open subgroup H C G° such that ¢ € VH
and v € VH. Then, there exist g1, ...,g94 € G such that Supp Mep = |_|f:1 Hg;ZH. Without loss
of generality, we may assume that g; € G° provided ¢;Z N G° # @; this implies Hg; ZH N G° C

Hg;(ZNG°)H. Then
d

Suppme ., NG° C |_| Hgi(ZNnG°H
i=1
which shows that mg ,: G° — C has compact support. By Theorem 11.4 it follows that (V, m|go) is
compact.

“(d) = (a)”: Let P = MN be a proper parabolic subgroup of G and fix A € AT (M,G) N G°
(Exercise: Check that such A exists!). We have to show V = V(). Let v € V and choose m > 0
such that v € V&m . By assumption, the function

me,v: GO i ‘/7

g+— m(ex, )m(g v = T(cg-1)v
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has compact support, where c,-1 = ek, -1k, € H(G, K,,) is the element from Lemma 13.1.
In particular, fr,, ,(A™!) = m(cy)v = 0 for I > 0. By Proposition 13.3 we have v € VEn= N
Uiz Kerm(ex) = VEn A V(N). Hence v € V(N). O

Theorem 15.4. FEvery irreducible smooth representation of G is admissible.

Proof. Let (V,7) € Rep(G) be irreducible. By Lemma 15.2 there exists a parabolic subgroup
P = MN and an irreducible cuspidal representation (W, 7) € Rep(M) such that (V,7) C iG(W, 7).
We first argue that (W,7) is admissible. Let ¢1,...,91 € M such that M = |_|i:1 Z(M)M?Og;.
Since each w € W N {0} generates W as a M-representation, we deduce that {7(g1)w,...,7(g)w}
generates W as a Z(M)M?O-representation. By Corollary 12.5, the center Z(M) acts on W through
a character. Hence, {7(g;)w}1<i<i generates W as a M-representation. Proposition 11.5 combined
with Theorem 15.3 implies that (W, 7j5s0) is admissible. But then (W,7) is an admissible M-
representation. Now, 35 (W, 7) is admissible by Theorem 14.3(d). Thus, also the subrepresentation
(V,m) is admissible. O

Ezercise. Let (V,m) € Rep(G). Show that (V, ) is (cuspidal and) irreducible if and only if (V,7)
is (cuspidal and) irreducible.

It turns out that one can prove a stronger version of Theorem 15.4.

Burnside’s Theorem 15.5. Let R be an associative C-algebra and W a finite dimensional simple
R-module. The action map R —» Endc(W) is surjective.

Proof. Note that Endr(W) = C by Schur’s Lemma 8.6. Let wy,...,wq be a C-basis of W. For
all v1,...,v3 € W, Jacobson’s Density Theorem 10.9 provides r € R such that rw; = v; for all
1 < ¢ < d. This proves the claim. O

Theorem 15.6 (Uniform Admissibility). Let H C G be a compact open subgroup of G. There
exists a constant ¢ = ¢(G, H) > 0 such that dim V¥ < ¢ for every irreducible (V,7) € Rep(G).

Proof. Let (V,m) € Rep(G) be irreducible and hence admissible by Theorem 15.4. Let m > 1 such
that K, C H. Since V C VK= we may assume from the start that H = K,,. By Theorem 7.9(a),
VH is a simple H(G, H)-module. By Burnside’s Theorem 15.5, it follows that the action map
H(G, H) — Endc(V*H) is surjective. Recall from Theorem 13.2 that

H(G, H) = H(K,H)CH(K, H),

where C C H(G, H) is the commutative subalgebra spanned by the ¢y = eg g for A € AT(G).
Recall also from the proof of Theorem 13.2 that C is generated by [ := >_"_ (ns + 1) elements. By

Lemma 15.7 we have dim7(C) < (dim VH)2*21_Z. We now estimate

(dim V#)? = dim Endc (V) = dim 7(H(G, H)) < (dim H (K, H))? - dim 7 (C)
< (dim H(K, H))? - (dim V)22

Hence, rearranging gives dim V¥ < ¢(G, H) == (dim H(K, H))Ql. O
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Lemma 15.7. Let V be a C-vector space of dimension d and let R C Endc (V) be a commutative
subalgebra generated (as a C-algebra) by elements ay,...,a; € R. Then

dim R < fi(d) = d*2 .

Proof. Step 0: We have fi(a+b) > fi(a)+ fi(b) for all a,b € R(. Note that for each > 0 we have

() = (2— 2171 (1 — 211272 > 0. Hence, the function z — f/(z) is monotonically increasing,
that is, f] (a +b) > f/(b) for all a,b € R>o. For each fixed a > 0 we deduce fi(a + b) — fi(a) =

fé) flla+z)dz > fo f/(z)dz = f(b) for all b > 0. This proves the claim.

Step 1: We reduce to the case where each a; is nilpotent. As R is commutative, all generalized
eigenspaces of V' are R-invariant. By the Jordan decomposition and induction on [, we find a
decomposition V = V; @ - -- @V, into R-invariant subspaces such that for all 1 < i < and 1<j<r
there exists A;; € C such that (ai)|v; —Aij idy; is nilpotent. Denoting R; the image of R in Endc( i)s
we observe R C H:=1 R;. Put dimV; =d; sothat d =dy + --- + d,. By Step 0 we have

fild) = fildi + -+ dv) = fuldr) + -+~ + fuldy).

We thus reduce to showing dim R; < fi(d ) for all 1 < j < r. Since {(a;)|y, — Aijidy, }; generates
R;, we may assume from the start that a;,...,a; are mlpotent

Step 2: Denote ¢;(d) the largest possible dimension of a commutative subalgebra R C End¢(V)
generated by nilpotent elements a1, ...,a;. We claim

di(d) < ¢u(ld — ¢u(d)/d]) + p1-1(d), foralld>0,1>1. (3.9)
Let a be the ideal generated by ay,...,q;, and put V; := a? V. We thus have a chain of subspaces
{0} =VaCVg 1 C---CVI V=V,

here, V; = a?V = {0} follows from the fact that, if o/V = o/*'V for some j, then o/V = o/ TV for
all i > 0 and hence a/V = {0}, because a is a nilpotent ideal. Let W be a complement of V; in V' of
dimension m. Note that /W + o’V = o/ (W +V;) = o’V =V}, that is, o/ W generates V; modulo
Vjt1. It follows that RW = V. But this means that the composite R < End¢ (V) — HornC(VV7 V)
is injective (here, the second map is given by restriction). We deduce dim R < md and hence
m > ¢;(d)/d. Let R' C R be the subalgebra generated by as,...,a; and let b = a1 R. Then
R =R +b and dim R’ < ¢;_1(d). The composite V 2 41V C Vi C V induces a commutative

diagram
End(c \)

Homg( Vl, —— Homgc(a1V, V) fw Endc (V).

The image of R under the diagonal map is b. Hence, the image R” of R under the vertical arrow
maps surjectively onto b. Observe that R” is in fact contained in End¢ (V7). As ¢; is monotonically
increasing, we deduce

dimb < dim R” < ¢;(dim V1) = ¢y(d —m) < ¢i(|d — ¢i(d)/d]).
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Together, we obtain dim R < dim b + dim R’ < ¢;(|d — ¢i(d)/d]) + ¢1—1(d) proving the claim.

Step 8: We claim that
Si(ld = fi(d)/d]) + fi—1(d) < fild).

Once this is established, we obtain ¢;(d) < fi(d) from the claim and (3.9) by induction on d and I.
This then finishes the proof of the lemma.

Put ¢ :=2'"'and note 0 < ¢ < 1. Let d > 1, so that (1—d~¢)?7¢ < 1—d~°. Since 2=~ = 2¢,
we compute

fi(ld = fi(d)/d]) + fia(d) < (d—d' )" + a2
— e (1 _ d—a)%& + g2
— g ((1 —d) T d*f)
<& (1—d*+d)
= fu(d).
This finishes the proof. O

Variant 15.8. Let H C G° be a compact open subgroup. Then dimWH < ¢(G,H) for every
irreducible (W, 7) € Rep(G°), where ¢(G, H) is the constant from Theorem 15.6.

Proof. Let (W, 7) € Rep(G°) be an irreducible representation. It is clear that indSo 7 is finitely
generated and hence admits a quotient indgo T —» o, where (E,0) € Rep(G) is an irreducible
representation. By Frobenius reciprocity 9.9, we have a natural bijection

Homg (indgo T, 0) =~ Homgo (T, U‘Go).

Hence, we obtain a non-zero map (W, 7) — (E, 0|go), which is injective as 7 is irreducible. For each
compact open subgroup H C G°, we deduce dim W# < dim Ef < ¢(G, H). O

We finish with some consequences of Variant 15.8.

Proposition 15.9. Fix a compact open subgroup H C G. There exists a compact open subset
Q= Q(G° H) C GY such that for all irreducible compact (W, 7) € Rep(G®) and all w € WH | we
have Supp fr,w C .

Proof. Let (W, 7) € Rep(G®) be an irreducible compact representation and let w € WH. Let m > 1
such that K,, C H. As Supp fu,w C Supp fk,,,w, we may assume from the start that H = K.
Put AT(G?) := A*(G) N G and consider the function

b AT(G) — W,
A —> T(C)\)U} = fH’w()\_l),

where ¢y = egag in H(G, H). As already observed in the proof of “(a) = (b)” in Theorem 15.3,
we have (Supp fr.)" ' C UkeK/H K Supp ¢+ (k) K. Hence, it suffices to find a finite subset Q' C

AT (G°) such that Supp ¢, C € for all w € WH and all irreducible compact (W,7) € Rep(G°),
because then Q = K (€)' K has the desired properties.
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Claim. The monoid A*(G?) is finitely generated.

Proof. Since AT(G°) = [],_; AT(GL,,(F)°), we may assume without loss of generality that G =
GL,(F). Identifying diag(ew™,...,@w™") with (mq,...,my) € Z™ C Q", we have to show that the
additive monoid M = {(m1,...,m,) € Z" |my > --- > my, and Y., m; = 0} is finitely generated.
For each 1 < i < n— 1, we denote A; = (Aj1,...,Ain) € Q" the unique element satisfying

Z;‘L:;[ )‘iJ =0 and )\i,j — )\i,j-i-l = 51']‘ for all 1 g] <n— 1. More explicitly, we put

1 ) . .
i ::E(n—z,...,n—z,—z,...,—z).

i times (n — i)-times

Consider the finite set X = {Z?;ll aih;|ay,...,an—1 € {0,1,...,n — 1}} NZ"™. We claim that a
generating set for M is then given by X U {nA1,...,nA,—1}. Indeed, it is clear that this set is

contained in M. Note that every © = (z1,...,2,) € M is uniquely determined by the sequence
of differences x1 — 22,29 — Z3,...,Tn_1 — Tpn, because of x1 + 29 + --- + x,, = 0. But this means
T = Z?;ll(xz — Tit1) - Ao Writing @; — 2,41 = a;n + b; with a; € Zso and 0 < b; < n, we
see that x = Z;’:’f biXi + Z;le a; - n\; can be expressed (non-uniquely) as a sum of elements in
XU{’N)\l,...,H)\nfl}. O]
We fix a family of generators v, ..., of AT(G?) and want to show that
l
Q= {Hy;ii 0<dy,....d < c(G,H)}
i=1

has the desired properties. We will deduce this from the following claim:

Claim. Let A € A*(G°) with X\ # 1. Let ng € Zxo such that ¢,,(A\") # 0. Then {¢,,(N)}72, C
WH is linearly independent. In particular, ny < ¢(G, H).

Proof of the claim. Note that ¢, has finite support, since (W, 7) is compact. Let N € Z-q be
the smallest integer with ¢,,(A\Y) = 0. Using the relations (3.1) (that is, cxx = cx * ¢y for all
AN € AT(@)), we see that ¢, (AN ) = 7(cni)pw(AY) = 0 for all i > 0. In particular, we have

dw(N) # 0 for all 1 < j < ng. Increasing ng if necessary, we may assume ng = N — 1. Let
aiy...,an, € C such that  :=>"°, a;jp,,(\) = 0. Then

j=1
0="7(crno-1)z = Y _ a;jdu(A"077)
j=1

for all ¢ = 1,...,n9. We inductively deduce a; = az = -+ = ap, = 0. The last assertion follows
from Variant 15.8. O

Let now A € AT(G?)~Q and write A = Nv/{ for some X' € A+(G°) and some i with d; > ¢(G, H).
The claim applied to v;, together with (3.1), shows

bu(N) = T(ex)dw (1) = 0.

Hence, Supp ¢, C . This finishes the proof. O
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Corollary 15.10. Let H C G be a compact open subgroup. Then GO has only finitely many
isomorphism classes of irreducible compact representations (W, ) with WH £ {0}.

Proof. Let (Wy,71),...,(W;,7) be pairwise non-isomorphic irreducible compact G°-representations.
Fix non-zero vectors w; € W and ¢; € WiH for all 1 < ¢ < I. Since & o fyw, = Mg, w,, it follows
that Supp me, w;, C Q(G°, H) for all i, where Q(G°, H) C G° denotes the compact open subset from
Proposition 15.9. We may assume that Q(G°, H) = HQ(G®, H)H. Then H\Q(G°, H)/H has finite
cardinality, say, L, and hence the space C2°(Q(G°, H), H) of H-biinvariant functions has dimension

L. The following claim shows [ < L, which then finishes the proof.

Claim. The matrix coefficients myg, ,,, for 1 < <[, are linearly independent in C°(Q(G°, H), H).

Proof of the claim. Let ay,...,a; € C such that z = Zl»:1 a;me, w, = 0. By Proposition 11.10

2

we have 7; 0 mg, , = 0 for j # i, and 7, 0 mg, o, = d(7;)"' - w; @ &, where d(7;) denotes the
formal degree of ;. Hence, for each 1 < j <[ we have 0 = 7j 02 = d(1;) 'a;w; ® &;. We deduce
ap=---=a;=0. O

O

§16. Interlude: Decomposition of Categories

For this section only, let G be a locally profinite group.

Definition 16.1. (a) We denote Irr(G) the set of isomorphism classes of irreducible smooth
G-representations. Given an irreducible G-representation (V,7), we denote [(V,7)] the iso-
morphism class of (V, 7). By abuse of notation we usually write (V,7) € Irr(G).

(b) Let (V,7) € Rep(G). We denote JH(V) (or JH(w)) the set of (isomorphism classes of)
irreducible subquotients (also called Jordan—Hdélder factors of (V,m)).

(¢) We say (V, ) has finite length if there exists a finite filtration {0} =V, CV; C--- CV; =V of
G-invariant subspaces such that V;/V;_; is irreducible for all 1 < i < [. The integer {(V) :=1
is called the length of V.

Lemma 16.2. Let (V,7) € Rep(G), and let {0} = Vo C V3 C--- CV; =V be a finite filtration of
G-invariant subspaces such that V;/V;_y is irreducible for all 1 <1 < 1.

(a) One has JH(V) = {[Vi/Vi—1] |1 < i < 1}. In particular, JH(V) is finite.

(b) Suppose G is countable at infinity. If (W, o) € Rep(G) has finite length, then Homeg(V, W) is
finite dimensional.

Proof. In (a), the relation “2” is trivial, so we only need to prove “C”. Let W/ C W C V
be G-invariant subspaces such that W/W’ is irreducible. Let ¢ be the unique index such that
WNVieg CW and WNV; € W. We then have WNV,_y =W NV and W NV, CWNV,.
We deduce WNV,_y =W NV, CW' NV, CWNV,;. We obtain non-zero maps

%% wnV; wnvy; wny; Vi

wr W'V, W' NV, wWnvViy Vicr

As W/W' and V;/V;_; are irreducible, all maps are isomorphisms. This shows (a).



§16. Interlude: Decomposition of Categories 71

We prove (b) by induction on | + ¢(W). If I + ¢(W) < 2, then dimHomg(V,W) < 1 by
Schur’s Lemma 11.6. Let now I + (W) > 2. If [ > 1, then we have an exact sequence
{0} —» Homg(V;/Vi—1, W) — Homg(V, W) — Homg(V;—1, W). The induction hypothesis implies
dim Homg (V, W) < dim Homg(V;/V;—1, W) + dim Homg (Vi—1, W) < oco. Similarly, if £(W) > 1, let
{0} # W’ C W be a proper G-invariant subspace so that 0 < {(W’),{(W/W') < £(W). We then
obtain an exact sequence {0} — Homg(V, W’) — Homg(V, W) — Homeg(V, W/W'), and the induc-
tion hypothesis implies dim Homg(V, W) < dim Homg(V, W') + dim Homg(V, W/W') < cc. O

Lemma 16.3. Let (V,7) € Rep(G).
(a) If W CV is a G-invariant subspace, then

JH(V) = JH(W) U JH(V/W).

(b) One has JH(V) = @ if and only if V = {0}.
(c) Let {W;}icr be a family of G-invariant subspaces of V.. Then

JH (Z Wi> = [ amw).

i€l i€l

Proof. We prove (a). The inclusion JH(W) C JH(V) is obvious, and JH(V/W) C JH(V) follows
from the third isomorphism theorem. Conversely, let V/ C V/ C V be G-invariant subspaces such
that V' /V" is irreducible (and hence defines an element of JH(V)). If V' NW & V" then the
projection map V' N W — V' /V" is non-zero and hence surjective, since V'/V" is irreducible. It
follows that V'/V" € JH(W). If VN W C V", then

VIVIAW —— V/W

l

V//V//

shows V' /V" € JH(V/W).

For part (b), it it obvious that V' = {0} implies JH(V) = @. If V # {0}, let V' C V be
the G-invariant subspace generated by a non-zero vector v € V. By Zorn’s Lemma there exists a
maximal G-invariant subspace V"' C V' with v ¢ V", so that V'/V" € JH(V).

We prove (¢). The inclusion “2” follows from (a). Let now V" C V' be G-invariant subspaces
of Y ,c; Wi such that V'/V" is irreducible. Let v € V' ~\ V. There exist i1, ...,4, € I such that
UNS 2?21 W;,. Hence the G-invariant subspace X = C[G]v generated by v is contained in 2?21 Wi, .
As the map X/ X NV" < V’'/V" is non-zero and V'/V" is irreducible, it is an isomorphism. Hence
VIV = X/XnV" e JH [, Wi,). Define Yy = Z’Ll Wi, for each 1 < k < n and Yy := {0}.
Then W;, —» Y)/Yi—1 is surjective so that JH(Yk/Yk_lg C JH(W;, ). Applying (a) repeatedly, we
obtain

V' V" € JH(Y,) = JH(Y, /Y1) UTH(Y, 1) = -+ = Lnj JH(Y;/Yeo1) C Lnj JH(W;,). O
k=1 k=1
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Definition 16.4. (a) Let {%}ics be a family of full subcategories of Rep(G). We write

Rep(G) = [[ (3.10)
i€l
if every (V, ) € Rep(G) decomposes as V = @,.; Vi, where V; € €; for i € I, and for all
Vi € €; and V; € €; with i # j, we have Homg(V;,V;) = {0}.
We denote Irr(%;) the set of isomorphism classes of irreducible smooth G-representations
(V, ) that lie in €. Note that (3.10) implies Irr(G) = | |, Irr(%;).
(b) Let S C Irr(G).

— We denote Rep(G)s the full subcategory of Rep(G) of all (V,7) with JH(V) C S. Hence,
Irr(Rep(G)s) = S. Note that Rep(G)g is closed under the formation of subquotients,
extensions, and direct sums by Lemma 16.3.

— If (V,7) € Rep(G) we denote by Vg the sum of all G-invariant subspaces of V' which lie
in Rep(G)s. Note that Vg is the largest subrepresentation of V' with Vg € Rep(G)s.

Lemma 16.5. Let S, 5" C Irr(G) with SN S = @.

(a) Let (V,7) € Rep(G). Then Vs N Vs = {0} and hence Ve ® Vg C V.
(b) For all (V,m) € Rep(G)s and (V',7') € Rep(G)s: we have Homg(V, V') = {0}.

Proof. We prove (a). Since JH(VsNVs:) C JH(Vs)NJH(Vs) C SNS' = &, we deduce VsNVg: = {0}
from Lemma 16.3(b).

For part (b), observe first that V{, = V'’ and hence V{ = {0} by (a). For each f € Homg(V,V’),
the image Im(f) is a quotient of V' and hence lies in Rep(G)s. Therefore, we have Im(f) C Vg = {0},
which shows f = 0. O

Definition 16.6. Let Irr(G) = | |
(V,7) € Rep(G) if

S. be a partition. We say that {S,}. splits an object

V=_EPVs..

acA
We say {S,}a splits Rep(G) if it splits every object of Rep(G), that is,

Rep(G) = [] Rep(G)s,.-

acA

acA

Lemma 16.7. Suppose Irr(G) = ||,c4 Sa splits (V,m) € Rep(G). Then {Sa}a splits every
subquotient of V.

Proof. Let W C V be a G-invariant subspace. It suffices to show W = @ _ W N Vs, because
then also V/W =@ _ Vs, /WNVs,. Put X =W/@, A WnNVs,. For each a we have a surjection
W/W NVs, — X and hence

JH(X) C JH(W/W N Vs,) € JH(V/Vs,) C Irr(G) ~ Sa.

We deduce JH(X) € N, Irr(G) N~ So = @, and then Lemma 16.3(b) implies X = {0}. Hence,
{Sa}a splits W. O
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§17. Cuspidal Components

Recall G = M,, for some partition n = (n1,...,n,) of n. In this section we are going to relate the
representations of GY and G and prove a first decomposition theorem for Rep(G).

Definition 17.1. Set A(G) = G/G° =2 Z". We call
X(G) = Homgrp(A(G),CX) >~ (C)"

the set of unramified characters of G. An element of X(G) consists of a (necessarily smooth)
character 1): G — C* such that /(G®) = {1}. The group structure on C* turns X (G) into a group;
concretely, for all ¢, ¢ € X(G), the element

op: G — C*,
g o(g) - (g)
lies in X(G).

Remark. The group X(G) carries the natural structure of a C-variety whose ring of functions is the
group algebra C[A(G)] of A(G), since

X(G) = Homajg ((C[A(G)], (C),

where “Hom,” denotes the set of homomorphisms of C-algebras. Since C[A(G)] = C[t5!, ..., tF]
is an integral domain, it follows that X'(G) is in fact connected (even irreducible).

The group G acts on Irr(GY) via (g, [(W, 0)]) = [(W, g«0)], where we recall (g.0)(y) = a(g~1v9)
for v € G°.

Lemma 17.2. (a) G acts on Irr(G°) with finite orbits.

(b) Let (V,m) € Rep(G) and (W, o) € Irr(G°). Denote V(o) the -isotypic component of (V,mco).
For all g € G one has
m(g) - V(o) = V(g.0).

Proof. Let (W, o) € Irr(G°) and denote [(W, o)] the corresponding isomorphism class. Let 2 € Z(G)
and v € G°. The C-linear isomorphism o (7): (W, (27).0) — (W, o) is G-equivariant: Indeed, for
all g € G° and w € W we compute

a(V)((27):0)(9)w = o(V)o(y "2 gzy)w = (7)o (v gy)w = o (g)o(y)w.

Hence, (z7)-[(W, )] = [(W, (277)«0)] = [(W, 7)], which shows that the action of G on Irr(G°) factors
through the finite group G/Z(G)G°. In particular, all orbits are finite.
We now prove (b). Recall that V(o) the image of Homgo (0, 7o) @ W =V, f@w — f(w). Let
g € G. As above, we have a G -equivariant isomorphism 7(g): (V, g.mjgo) = (V,mg0), v — w(g)v.
Now note that the diagram
v
v

Homgo (0 W‘Go) QW — V(o) °—>
Homo (g*a, g*mgo) QW i

f*ﬂf(g)Ofl

Homo (g*a 7T|Go) QW —» V (g«0 ‘é
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commutes. It follows that the dashed arrow exists and is an isomorphism. O
Proposition 17.3. Let (V,7) € Irr(G).

(a) mqo is semisimple of finite length. Moreover, the irreducible GO-representations contained in
mgo form a single G-orbit.

(b) For any (V' ,7') € Irr(G), the following are equivalent:

(Z) W\GO = 7T‘/GO 5
(it) JH(migo) N JH(7(g0) # @
(iii) ™ = x @7 for some x € X(G).

Proof. We prove (a). The subgroup Z(G)GP has finite index in G' and hence T\ z(G)Go is semisimple
by Proposition 8.3. By Corollary 12.5, Z(G) acts by a character on 7. Hence, m|go is semisimple.
Moreover, if (W,7) € Irr(G°) is contained in (V, o), then so is (7(g)W, mgo) = (W, g.7), and
V =3 ,cc/z(c)co m(g)W. This shows JH(mgo) = {l9:7]| 9 € G/Z(G)G"}, whence (a).

We now prove (b). The implications (iii) = (i) = (ii) are obvious, so we only show (ii) = (iii).
By (a) and Lemma 16.2, the C-vector space X = Homgo (7o, WI/GO) is finite dimensional. The
assumption implies X # {0}. Define a G-representation (X,7) via 7(g9)f = n'(g) o fomw(g™?) for
all g € G and f € X. By construction, 7go = 1. Now, the abelian group Z" = G/G° acts on X.
As C is algebraically closed, there exists a character y: G/GY — C* and f € X \ {0} such that
7(9)f = x(g) - f for all g € G. We compute

f(x@m)(9v) =x(9) - f(r(g)v) = (7(9)f) (x(g)v) = 7'(9)f (v)

forall g€ G and v € V. Thus, f: x ® 7 — 7 is a non-zero G-equivariant map between irreducible
G-representations, hence an isomorphism. O

Consider now the action of X(G) on Irr(G) given by x -7 = x ® w for x € X(G) and
(V,m) € Irr(G).

Lemma 17.4. The stabilizer of any (7,V) € Irr(G) is a finite subgroup of X(G).

Proof. By Corollary 12.5, each (7,V) € Irr(G) admits a central character x,: Z(G) — C*. Take
any ¢ € X(G) which stabilizes 7. Then x» = Xyer = V|z(q) * Xx, 50 that ¥z = 1. It follows
that ¢ lies in Homy,,(G/Z(G)G?,C*), which is finite because G/Z(G)GY is finite. O

Definition 17.5. Denote Irr,s,(G) the set of (isomorphism classes of) irreducible cuspidal repre-
sentations of G. By the equivalence “(a) <= (d)” in Theorem 15.3, the action of X(G) on Irr(G)
restricts to an action on Irre,s,(G).

An orbit of the X(G)-action on Irre,s,(G) is called a cuspidal component. Observe that by
Lemma 17.4, every cuspidal component D is of the form D = (C*)"/T', for a finite group I', and
hence carries itself the structure of a connected C-variety; see the following proposition.?

Proposition 17.6. Let X be an affine C-variety with coordinate ring C[X]. Let T be a finite
group together with a group homomorphism p: T' — Autc(X), where Aute(X) denotes the group of

automorphisms of the C-variety X. Then the orbit space X /T is an affine C-variety with coordinate
ring C[X]'.

2In fact, one can show that there is a non-canonical isomorphism D 22 (CX)", so D is a complex torus.
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Proof. Recall that an affine C-variety is a tuple (Y,C[Y],ev) consisting of a set Y, a finitely
generated reduced commutative C-algebra C[Y] and a bijection ev: Y = Hom, (C[Y], C); we
view each f € C[Y] as a function on Y via f(y) = ev(y)f for all y € V.2

A morphism (Yi,C[Y1],ev) — (Ya,C[Yz2],ev) of C-varieties is a pair (1,1%) consisting of a
(set-theoretic) map v: ¥; — Y5 and a C-algebra homomorphism *: C[Ys] — C[Y;] such that
FW(y)) = (W f)(y1) for all yy € V1 and f € C[Y3)].

The morphism p: I' — Autc(X) comes with a group homomorphism pf: I' — Autal(C[X])
such that f(p(g)x) = (p*(g7 ') f)(z) for all z € X, g € T and f € C[X]. We consider the C-algebra

CIX)" = {feC[X]|p*(9)f = fforall geT}.

We will prove that C[X]" is finitely generated and reduced, and that there is a (necessarily unique)
bijection X/T° = Homa s (C[X]F, C) making the following diagram commutative:

X —=— Homa,(C[X],C)

| |

X/F **E*I;[> HOmAlg (C[X]F, (C)
As a subring of a reduced ring, C[X] is reduced. We now prove that C[X]" is a finitely generated
C-algebra. Fix C-algebra generators fi, ..., f € C[X]. For each 4, the monic polynomial x, (t) :==
[,er(t — p*(9)f:) = S0 aijt? lies in C[X]V[t] and satisfies x,(fi) = 0. Let A C C[X]" be the
subalgebra generated by {a;;}; ;. It is an easy exercise to show that the finite set { fi* - - - £ boge,<#T

generates C[X] as an A-module. Since A is Noetherian, also C[X]" is finitely generated over A, say,
by fi,..., f.. Then {a;;};; U{f1,..., .} generates C[X]" as a C-algebra.

It remains to prove that the composite X — Hompe(C[X],C) — Homays(C[X]",C) factors
through a bijection a: X/T' —» Hom g (C[X]F,C). Forallz € X, g €T, and f € C[X]' we have
flp(9)x) = (p*(g= ") f)(z) = f(x), that is, f is constant on I'-orbits. This implies that there is a
well-defined map « making the diagram commutative.

Let us prove that « is injective. We abbreviate ¢, = ev(z) for © € X. Let z,y € X such
that a(p(I')z) = a(p(T)y). This means ¢, (f) = p,(f) for all f € C[X]'. We have to find g € T
such that y = p(g)z or, equivalently, Kery, C Kerp,,), (for the equivalence, use that for each
¢ € Hompig(C[X],C) one has C[X] = C @ Kery and ¢)¢c = idc). Let f € Keryp,, and put
7=l er P*(9)f € CIX]7. Then

[T #rw=(D) =2 () =2y () = [T o (9)f) =0 nC.

gel gel’

Hence, there exists g € I' (depending on f) with ¢, (f) = {0}. So far, we have proved Ker ¢, C
UgEF Ker ¢, (g)z- By the Prime Avoidance Lemma, we have Ker ¢, C Ker ¢, 4, for some g € T
To wit, let g1,...,9» € T be a minimal set with Kerp, C |J;_, Ker ©p(gi)zs and assume for a

contradiction that 7 > 2. By minimality, we have Ker ¢, ¢ Uj i Ker opg)a, and so we find for each

3Let C[t1,...,tn] — C[Y] be a surjective C-algebra homomorphism with kernel a = (ai,...,am). By
Hilbert’s Nullstellensatz, the map ev: C® — Homajg(Cl[t1,...,ts],C) is bijective, and under ev the inclusion
Hom e (C[Y],C) — Homaig(C[t1,. . ., tn], C) identifies Y with the subset {y € C" |a1(y) = -+ = am(y) = 0}.
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i an element f; € C[X] with ¢, (fi) = ¥p(g)2(fi) = 0 and ¢, y,).(fi) # 0 for all j # i. Consider
f=/fi+ far- fr € C[X]. Then (py(f) = 0, but (pp(gl)m(f) = Qop(gl)x(fé) ) "@P(gl)x(fr) # 0 and
(g2 (f) = ©p(g;)2(f1) # 0 for all 2 < j < 7, which contradicts Ker, C (J;_; Ker ¢, g,y This
concludes the proof of the injectivity of «.

Finally, we show that « is surjective. Equivalently, we have to show that the restriction map
Homae(C[X],C) — Homae(C[X]", C) is surjective. Let ¢: C[X]'" — C be a C-algebra homomor-
phism. Then Ker ¢ is a maximal ideal of C[X]'. It suffices to find a maximal ideal m C C[X] such
that Ker o = C[X]' N'm, because then the unique C-algebra homomorphism ¢’: C[X] — C with
Ker ¢’ = m extends .

Consider the ideal a := C[X] - Keryp. We claim a # C[X]. Assume for a contradiction that
1 € a. Then we can write 1 = Y | fih;, for certain f; € C[X] and h; € Kery. But then for

fi = 21 2 ger P'(9)fi € C[X]", we have

noo_ n 1 n .
;fihi - ;gzpﬁ(g)fi hi = ;ﬁzpﬁ(g)ﬂ oA g)hs

ger ger
=> ﬁ > ) (fih) = # >3 fih) = ﬁ > F9)=1.
i=1 " ger geT =1 g€l

Hence, 1 =>"" fihi € Ker ¢, which contradicts the fact that Ker ¢ is a proper ideal of C[X]F. This
shows a # C[X]. By Zorn’s lemma we find a maximal ideal m C C[X] containing a. By construction,
we have Ker p C C[X]'' N'm. Since Ker ¢ is maximal, it follows that Ker ¢ = C[X]" Nm. O

Proposition 17.7. Let D C Irrcu,(G) be a cuspidal component. Then D splits the category
Rep(G).

Proof. Put D’ := Irr(G) ~ D and let (V,7) € Rep(G). We have to show V = Vp @ Vp/, where
Vp € Rep(G)D and Vpr € Rep(G)D/.

Let (W,0) € D. By Proposition 17.3, the restriction p := 0|go is semisimple of finite length,
only depends on the X (G)-orbit of o, and JH(p) = {p1,...,p} forms a single G-orbit. Since o is
cuspidal, Theorem 15.3 shows that p is compact, hence also py, ..., p; € Irr(G°) are compact.

Put 7 := mgo and recall the GC-equivariant projections 7(ep,): V. — V from Theorem 11.12.
They provide a decomposition V =V (p;) & Ker7(e,,) in Rep(G®), where V(p;) = Im7(e,,) is the
pi-isotypic component of V' and p; ¢ JH(Ker7(e,,)). These satisfy the following properties:

(i) 7(ep,) oT(ep,) = 0 for all i # j. Indeed, we have JH(7(e,,)Im7(e,,)) € {pi} N{p;} = @.
Lemma 16.3(b) now shows 7(e,,)(Im7(e,,)) = {0}.

(ii) 7(g)7(ep;) = T(€g.p;)7T(g) for all i and g € G. We may check the equality after restriction
to V(p;) and Ker7(e,,) separately. Lemma 17.2(b) shows 7(g)V(p;) = V(g«ps). Hence, it
remains to check 7(g)Ker7(e,,) C Ker7(ey,,,). Note that any irreducible subquotient x of
7(g) Ker (e, ) satisfies & % g.p;. Hence, JH(7(eg. ,,)7(g9) Ker7(e,,)) = @ and Lemma 16.3(b)
shows 7(eg. p,)7(g) Ker p(e,,) = {0}.

By (i), we obtain a decomposition

L !
V= @V(Pi) oV, where V' = ﬂ Ker7(ep, ).
i=1

i=1
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Now, @, V(p;) is G-invariant by Lemma 17.2, and V' is G-invariant by (ii). By construction, we
have @, V(p;) € Vp and V' C Vps; for example, if £ is an irreducible subquotient of @, V(p;),
then p; C ko for some i, and hence x € D by Proposition 17.3(b). This implies the assertion. [

Theorem 17.8. Put Rep(G)cusp = [ Rep(G)p, where D runs through the cuspidal components
of Irrcusp(G), and put Rep(G)ind = Rep(G) ter(G)<Irrews, (G)- Then

Rep(G) = Rep(G)Cusp X Rep(G)ind = HRGP(G)D X Rep(G)ind~
D

In other words, Irrq.s,(G) splits the category Rep(G).

Proof. For each congruence subgroup K,,, there are only finitely many isomorphism classes of
irreducible compact GP-representations with a non-zero K,,-fixed vector by Corollary 15.10. By
Proposition 17.3, it follows that there are only finitely many cuspidal components, say, D1,...,D;,
which consist of all cuspidal irreducible representations with a non-zero K,,-fixed vector. Clearly,
jml < jmg if mi < ma.

Let (V,m) € Rep(G). By Proposition 17.7 and induction, we obtain a decomposition

V= chusp,m D Vvind7m7 (311)

where Veusp.m = 521 Vp,, and JH(Vina,m) consists of those (W,0) € Irr(G) which are either
cuspidal and satisfy W= = {0}, or are not cuspidal.
For any m < m’ we have Vind m = Vind,m’ ® (Vind,m N Veusp,m’) by the very construction. Since

Km
clearly Vo o0 0 = VC{fgg’m, we have (Vind.m N Veuspm/)E™ € Vindim N Veuspm = {0}. Hence, we
deduce
KTN. — K?n /
Vindsn = Viadrons for all m < m'. (3.12)

Now, consider the G-invariant subspaces

chusp = U ‘/;usp,m and V}nd = m Vvind,m

m2=1 m21

of V. By construction, we have Veysp € Rep(G)cusp and Ving € Rep(G)ing. For all m > 1, we have
VEm = VEm by (i) and VEr = VEn by (3.12); so we deduce VEm = VEm g VEn - Since

cusp cusp,m ind,m cusp

V= Um>1 VEm  we finally obtain V = Veysp @ Vind. O

Corollary 17.9. Fiz m > 1 and suppose that (V,7) € Rep(G) is generated by VE» as a G-
representation. Then WEm £ {0} for all cuspidal subquotients (W, o) of (V, 7).

Proof. Let (W, o) be a cuspidal subquotient of (V7). By Theorem 17.8, we have a decomposition
V = Veusp @ Vina, and (W, 0) is a subquotient of Veusp. The decomposition also shows that Voyep is

generated by ‘Q{f;;; In the proof of the above theorem, we showed Vcllf;g = chsrgm = 32'1 Vp,™
where Dy, ..., D;  are the cuspidal components consisting of cuspidal irreducible representations
with a non-zero K,,-fixed vector. Since Vs, is generated by chf;;;, it follows that Veysp = le Vp,.

Let now (E,7) be a cuspidal irreducible subquotient of (W,o). Then (E,7) is an irreducible
subquotient of Veusp and hence 7 € D; for some 4. This implies EXm # {0}. If W C W is a G-
invariant subspace together with a G-equivariant surjection W’ —» E, then (W’)Em — EXm £ {0}
is surjective by Lemma 5.8 and hence W= O (W")En £ {0}. O
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Corollary 17.10. Let P = M N be a proper parabolic subgroup of G and let (W,c) € Rep(M).
Then zg(VV, o) does not have a cuspidal subquotient.

Proof. Write (V,7) = ZIGD(VV, o). By Theorem 17.8 we have a decomposition V' = Viyp @ Vina such
that JH(V) N Irreysp(G) = JH(Veysp). We thus have to show Veus, = {0}. By definition, we have
7% Veusp = {0} and hence Frobenius reciprocity (Theorem 14.3(a)) implies

Homg (chuspa lg W) =~ Hom (’I"IGD V;:usp, W) = {()}

Hence, the inclusion Viugp < ig W is zero, which shows Viugp = {0}. O

§18. The Geometrical Lemma

Recall G = M, for some partition n = (ny,...,n,) of n. Let B := P, 1)NG and let Wg =
Yo NG =%, x---x %, bethe Weyl group of G. We fix two parabolic subgroups P = M N and
@ = LR of G, which for simplicity we assume to be standard, i.e., P and ) contain B.

Lemma 18.1. Put
whe = {weWs|wlLnNB)w™' CBandw ' (MNB)wC B}.

(a) One has G = |,cyyr.e PwQ.
(b) If w € WPR | then
MNwQuw™ = (MnwLw™') - (MNwRw™")
is a standard parabolic subgroup in M. In particular, M C wQw™" if and only if M C wLw™?'.
Remark. We make some remarks regarding Lemma 18.1.
(i) The decomposition in (b) holds for all w € W, but M NwQw™?! is standard (if and) only if
w e WP’QWL.
(i) Even for w € W@ the parabolic subgroup wQw~! C G need not be standard.

Ezample. Let G = GLy(F), P = Pa.1), M = Mo, and put ¢ = (1 0 (1)).
Then W5 = {t 1}, and neither tPt~1 = (ft) z (:)) nor tMt=! = (3 g 0 ) are standard.

Sketch of the proof of Lemma 18.1. Part (a) is [Car85, Proposition 2.8.1(iii)]. For ease of notation,
we assume throughout that G = GL, (F'). We will be using the following elementary facts:

— W = %, is generated by the transpositions s;, defined by s;(j) =7+ 1, s;(j +1) = j, and
sj(¢) = i whenever i ¢ {j,j+1}. Put S == {s1,...,s,_1}. For each partition n = (n4,...,n,),
the Weyl group Wy, is generated by Sy, = SN M.

— For each w € W, denote inv(w) := {(¢,7) | < j and w(i) > w(j)} the set of inversions. The
number ¢(w) = #inv(w) is called the length of w. If (j,7 + 1) is an inversion of w, then the
map

inv(w) ~{(4,5 + 1)} = inv(ws;),
(i1,12) ¥ (s;(i1), 85 (i2))
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is bijective; in particular, #inv(w) = #inv(ws;) + 1. By induction, we deduce that ¢(w) is
the smallest integer r such that there exist 1 < jy,...,J <n —1 with w = s;, --- 55, .

— Foreach 1 <i# j <n,put Uy ) = {eij(\) | X € F}, where e;;(A) is an elementary matrix (see
the proof of the Bruhat decomposition 12.9). Then inv(w) is the set of those pairs (4, j) with
Ui,y € B and ’U}U(Z-’j)’w_l C B. Moreover, U is generated as a group by U1 ,2y,- -+, Un—1,n)-

Note that, since B C P and B C @, each double coset PgQ is a union of cosets of the form BwB,
where w € Wg, by the Bruhat decomposition 12.9. Hence, there exists a subset X C Wg such that
G = |_|w€X P’U)Q

We first argue that X is a representing system for Wy \Wes/Wy. Observe that We N P = Wy,
The Bruhat decomposition 12.9 implies P = BW)y,;B. Similarly, we have Q N Wg = W, and
QQ = BWy,B. For each w € Wg, we thus need to show

BW]\/[B’LUBWLB g BWMUJWLB

This follows inductively from the following fact:

Fact. For each 1 < j <n—1and w € W, one has s;Bw C BsjwB U BwB and symmetrically,
wBs; C Bws;B Ll BwB.

Proof of the fact: We only prove the first inclusion. The second follows from the first by passing to
inverses. Put B’ := wBw~!. Then it suffices to show s;B C stB’ L BB'. Let eq,...,e, be the
standard basis of F™ and denote G; C G = GL,(F) the subgroup of elements which fix e;, whenever
i ¢ {j,7 + 1}, and which stabilize Fe; + Fe;; then G; = GLy(F). One easily checks s; € G; and
GjB = Pq,.121,.,1) = BGj, where the 2 is in the j-th spot. Hence, s;B C BGj, and it remains
to prove

Gj Q (BﬂGj)Sj(B,ﬁGj)U(BﬂGj)(B,ﬁGj). (313)
Note that By := B N G, corresponds to the group of upper triangular matrices in GLo(F'). If
w™(j) < w™'(j + 1), then U 41y € wBw™' and hence B’ N G; = By. Otherwise, one has
Ugs1,5) € wBw™! and hence B’ N G; = B, corresponds to the group of lower triangular matrices

in GL2(F). By the Bruhat decomposition 12.9, we have G; = By U Bas;By. Multiplying from the
right with sj_l, we deduce G; = Bys; By LI ByBjy, which proves (3.13). O

We now know that X is a representing system for Wi \Wq/Wr,. We choose X such that each
w € X has minimal length in WywWy,. We claim X = WP@. Let w € X. For each j with s; € Sy,
we then have w(j) < w(j + 1), because otherwise ws; would be a representative of Wy wWy, of
smaller length than w. Hence, wU(MH)w*l C B and then, since LNU is generated by the Uy; ;1)
with s; € S, also w(L N B)w™' C B. A similar argument shows w='(M N B)w C B, whence
X cwhe.

In order to prove WP@ C X it suffices to show that Wy wWy, N WPQ contains at most one
element, for all w € Wg. This is the content of the following claim.

Claim 1. Let v,w € WP? and o € W)y, y € Wy, with zv = wy.
(i) One has z =1 if and only if y = 1.
(ii) If 2 # 1, there exists s; € v~ Syv N Sy such that £(zs,;)) < (z) and £(ys;) < ((y).

(iii) One has v = w.
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(iv) Wiy NwWrw™? is generated as a group by Sy NwSpw™1.

Proof of the claim. Note that W@ is the set of all w € Wg with w(j) < w(j + 1) for all j with
s; € Sp,and w1 (i) < w™'(i+1) for all ¢ with s; € Syy; this follows from the fact that LN B (resp.
M N B) is generated by T" and the U(; ;1) with s; € Sp (resp. by T and the U(; ;41) with s; € Shr).

We first prove (i). Let 2 = 1 and assume for a contradiction that y # 1. Then there exists
s; € Sp such that y(j) > y(j +1). Note that Ugy)y+1)) = YUy j+1y~ " € LN B and hence
w € WP implies v(j) = wy(j) > wy(j + 1) = v(j + 1), which contradicts v € WQ. This shows
that x = 1 implies y = 1. A similar argument shows the reverse implication.

We now prove (ii). Assume x # 1. By (i) we have y # 1. Hence, there exists s; € Sp, such that
y(4) > y(j+1). Then clearly £(ys;) < £(y). Since v,w € WP, we have v(j) < v(j+1) and zv(j) =
wy(j) > wy(j + 1) = zv(j + 1). Therefore, (v(j),v(j + 1)) is an inversion of x. But since x € Wy,
we deduce Uy (jy,0(j+1)) € M N B. We claim v(j+1) = v(j) + 1, which then implies s,;) € Sy and
U(x8y(;)) < L(x): Indeed, if we had v(j) < i < wv(j+1) for some i, then Uy (j).iy, Uiiw(j+1)) € M NB,
and then v € W@ implies j = v~ (v(j)) < v™'(i) < v ' (v(j + 1)) = j + 1, a contradiction. This
finishes the proof (ii).

We prove (iii) by induction on ¢(z). If x = 1, then y = 1 by (i), and hence v = w. Let now x # 1.
By (ii) there exists s; € v='Syv N Sy, such that £(z') < £(z) and £(y') < {(y), where 2’ = s,(;
and y' := ys;. Since s,(;) = vs;v~ !, we compute

z'v = ws,(jv = 2vs; = wys; = wy'.

By the induction hypothesis, we conclude v = w.

The same argument proves (iv). Denote YW’ the group generated by Sy NwSrw=!. Let x € Wy,
and y € Wy, such that 2 = wyw™! € Wy NwWrw~!. We show z € W' by induction on £(x).
If ¢(z) = 0, there is nothing to show. If z # 1, then also y # 1 by (ii). Therefore, we find
s; € wSyw N S such that for ' == xs,;) and y' = ys;, we have £(2') < {(x) and L(y') < £(y).
As before, we deduce ' = wy'w™! € Wy NwWrw~!. By the induction hypothesis, we have
x’ € W' and hence also x = 2's,,;) € W'. O

We now prove (b). The set Sy N wSpw™! determines a partition n’. We show M N P, =
M NwQuw™'. Since w € WH?, we have w™ (M N B)w C B C Q and hence M N B C M NwQuw™?.
Together with M,y C M NwLw™!, we deduce M N P,y C M NwQw~'. Moreover, we have
We N M NwQuw=t = Wy NwWrw™! = Wy, by Claim 1(iv). The Bruhat decomposition 12.9
shows the reverse inclusion: a

MnwQuw = || (MABw(MNB)CMNP,.

vEWMn,

Let now ¢ < j such that U ;) € M NwLw™". Then M NwLw™" also contains U; ;) and the

computation
11y (1 0y (1 1y_ (0 1
0 1 -1 1 0 1/ \-1 0
shows that the transposition which interchanges i and j belongs to Wy NwWrw ™! = WMQ" But
this implies U(i,j) C M,,. The contrapositive shows M NU,» € M N wRw™!. Now,
MNwQuw ' =MNPy =M,y - (MNUy)C (MNwLw™") - (MNwRw™) € MNwQuw™".
Hence, we have equality throughout, and M,y = M NwLw™! and M N U,y = M NwRw™!. O
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Compare the following theorem with the Mackey decomposition 9.5.

Theorem 18.2 (Geometrical Lemma). Let (W,0) € Rep(M). There exist an ordering W@ =
{wi,...,w} and a filtration

{0} =FR CF CFC- - CF=r3il(Wo)
by L-invariant subspaces together with L-equivariant isomorphisms

~ L —1 .M .
F/F;_ byt Py, Wi rmeiQw;l(VV’ o), forall<i<lI.

Sketch of the proof. A detailed proof can be found in [Renl0, VI.5.1]. We briefly explain how to

construct the filtration. Let P x Q act on G via (z,y) - g :== xzgy~!. For every P x Q-invariant

subset Y C G and each (E,T) € Rep(P) we put

flgy) = 7(9)f(y) forallge P,y €Y,
ind5(E,7) =< f: Y — E| fis locally constant, and € Rep(Q).
the image of Supp f in P\Y is compact

Choose an ordering W% = {wy,...,w;} such that the subsets
Y; = |_| Puw;QC G
j=1
are open, for all 1 <i < 1. For (W, o) € Rep(M), the filtration in the assertion is then given by
Fy = Jp(6,"? @ ind} (6% @ Inf} 0)) Cifo  for1<i<L.

M (W, o). To

L

~

1= /waleiﬁL Wiy rMﬂwiwal
lighten the notation, we write Y :=Y;_1, Y/ :=Y; and w := w;.

Let us now sketch the argument for why we have F;/F;_

Claim 1. (a) We have a short exact sequence
0 — indb W — ind}y W — ind2"CWw — 0,

where the first and second maps are given by extension by zero and restriction of functions,
respectively.

(b) The map

. Pw@ >~ Q —1
indp Y0 — mdw_lemQ W, 0| PrwQu-15

fr—lq— f(wg)]

is a Q-equivariant isomorphism.
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(c) Write P’ = w~!Pw and denote the projection map W — Jpngr(W) by v + 0. Let § ==
(OR)|PnQ ® 8 pips Which is a smooth character of P’ N Q. The map

Jr indg,ﬂQ o —»ind5 (6 ® Jpinr(0)),

flom [ TG avte)

is an L-equivariant isomorphism. Here, v denotes a semi-invariant Haar measure on the space

(PN R)\R.

Proof of the claim. Part (b) is proved in the same way as (2.12) in the proof of the Mackey decom-
position 9.5. For the support conditions, one has to check that the inclusion Q < w ™! Pw@ and mul-
tiplication w1 PwQ %> PwQ induce homeomorphisms w1 Pw N Q\Q — w L Pw\w'PwQ —»
P\ Pw(@ on the right coset spaces (which come equipped with the quotient topologies).

If Z C G is any P x Q-invariant subset, the multiplication map

C®(P\Z) ®c W —» ind4 W,
fRuvr [z f(2)v]

is a C-linear isomorphism, where C2°(P\Z) is the space of all locally constant functions P\Z — C
(which we also view as functions Z — C which are invariant under left translation by P) with
compact support; see the proof of (2.6). Hence, the sequence in (a) arises from the sequence

0— CX(P\Y) — C®(P\Y') — CX(P\PwQ) — 0 (3.14)

by applying the exact functor _ ®c W. Hence, it suffices to show that (3.14) is exact. Exactness
on the left and in the middle are clear, so it remains to prove that the restriction of functions
yields a surjective map C°(P\Y') — C(P\PwQ@). So let f: P\Pw@ — C be locally constant
with compact support. We find a compact open subgroup H C G and {z;};c; C G such that
G = |_|j€J Pz;H and f is constant with value, say, ¢; on the subsets Pz; H N Pw@; we put ¢j :==0
if Pz;HN Pw@ = &. Since f has compact support, only finitely many of the ¢; are non-zero. Let
now f’: Y’ — C be the function which is constant on Pz; H with value ¢;, for all j € J. Then f’
lies in C'¢°(Y”) and satisfies f|/PwQ =f.

For part (c), we refer to [Cas95, Proposition 6.2.1]. We fix left invariant Haar measures up
and ppnr on R and P’ N R, respectively. Let v: C°((P' N R)\R,0 = 1) — C be the associated
semi-invariant Haar measure; note that the modulus characters of R and P’ N R are trivial, since
both groups are unions of its compact open subgroups (Example 11.1). For each C-vector space E
on which R acts trivially, we obtain an F-valued Haar measure

C2((P'NR)\R.E) = CZ((P' N R)\R) @c E " B,

which we again denote v. We observe the following properties of v:

4In fact, we need to extend the notion of modulus character a bit: for each g € Q denote conj,: R — R,
o +— gzg~' the conjugation by g. Then p/p(f) = pr(fo conj;l) defines another left invariant Haar measure on R,
and hence p/y, = 6g(g)ur for some dg(g) € R>o. It is easy to see that dp: Q — R;O is a smooth character. Similarly,
we extend dprApr to a smooth character P/ N Q — R;O.
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— Let g € P'N L and denote conj,: R — R, v grg~'. Then conj, (PN R) = P'N R, and
VI(f) =v(fo conjg_l) defines another semi-invariant Haar measure. Hence, there exists a
scalar 0(p/nry\r(9) € C* such that v = 6 pinr)\r(9) - V.

Ezercise: show that & pnpy\r(9) = 0(9) = 0r(9)0pnr(g) ™"
— If a: E — F is a C-linear automorphism, then v(a o f) = a(v(f)).

We check that the map
ind®,o (W, o) — Infg indp (6 @ Jpar(W,0)),

frosFefon [ Taga)

(P'NR)\R

is well-defined. Let f € indg,ﬁQ W. For each g € Q, the map R — JpAr(W), z — f(zg) is locally
constant with compact support modulo P’ N R, and lies in C°((P' N R)\R, Jprnr(W)). Hence, the
integral [ (P'OR\R f(zg) dv(x) is well-defined for each g. Since v is right invariant with respect to

R, the integral depends only on the image of ¢ in Q/R = L; in particular, R acts trivially on f
under right translation. For each y € P’N L and g € L we compute

flyg) = /(P/HR)\R f(xyg) dv(x) = /(P'mR)\R o(y)f(y~tey - g) dv(z)

= 5(y)Tpn(0)(y) / F(29) dv(z) = (6 ® Jpr(@) (1)F(9)-

(P'NR)\R

Note that f is locally constant and has compact support modulo P’ N L. We deduce that f lies in
Infé indILD,mL (6 ® Jpar(W, a)). It is clear that the map f — f is @Q-linear and hence induces an
L-equivariant map

®: JpindP, o (W,0) — indfn, (0 ® Jpnr(W,0)).

We show that & is surjective: It suffices to exhibit a generating set of indbs, -, (8 @ Jpinr(0))
which lies in the image of ®. P/‘or any tfilple (w, g, K), where K C L is a compact open subgroup,
g € L, and w € Jpiqp(W)FP'NN9KI™" " we denote Jwgx: L = Jpar(W) the function with
support (P’ N L)gK given by

fw.g.x(xgk) = 6(z)JpAr(c)(x)w,

for all z € P’N L and k € K. (Check that zgk = /gk’ implies fy, g,k (xgk) = fu,q,x(x'gk’), which
requires that w is fixed by (P’ N L) NgKg~'.) It is clear that the f, 4 x, where K runs through a
fundamental system of compact open subgroups, span ind%, -, (§ ® Jpnr(W)) as a C-vector space.
Let Ko € @ be a compact open subgroup with image K in L. It remains to show that fi 4 x
lies in the image of ®. The image of P’ N Q N gKog~! in L then coincides with P"N LN gKg .
Since the quotient map W — Inf,’gigé JpinpW is surjective and taking P’ N Q N gKog~-invariants
is exact by Lemma 5.8, we may pick a lift wg € WP'NQNgKog™" of 4. Consider now the function
f: Q@ — W with support (P’ N Q)gKy given by f(xgk) = o(x)wq for all x € P’ N Q and k € K.
We claim @(f) = ¢+ fu,4,x for some ¢ > 0. Let y € R with yg € (P’ N Q)gKoy, and pick z € P'NQ
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and k € Ky such that yg = zgk. Denoting pr;: Q@ — Q/R = L the projection, we compute
g = pr.(yg) = pry(xgk) = pr(x)gpry(k), and hence pry(z) € (P’ NL)NgKg~'. We deduce

flyg) = f(xgk) = o(x)wo = Jpinr(c)(@)w = Jpnr(o)(pry(z))w = w.
Therefore, ®(f)(g) = f(P,mR)\Rf(xg) dv(z) = ¢ w, where ¢ = v(par)\R(1rN(P'NQ)gKog—1) > O
Moreover, it is clear from the definition that ®(f) is fixed by K and that the support of ®(f) is
(P'NL)gK. It follows that ®(f) = ¢ fu,g K, which shows that ® is surjective.

It remains to prove that ® is injective. We need the following claim:
Claim 2. Recall the left Haar measure ur: C°(R) — C on R.

(a) Let Rp € R and K C @ be compact open subgroups. Then K normalizes a compact open
subgroup R; C R containing Ry.

(b) Let f € indg,mQ W. For each g € Q we define f; € CX(R,W) as fy(z) = f(gz). Then
f e (indg,mQ W)(R) if and only if for every g € @ there exists a compact open subgroup
R, C R such that p(er,)f, = 0.

Proof of the claim: We first show (a). The subset X = (J, cx kRok~! C R is compact as the image
of the map K x Ry — R, (k,x) — kxk~!. Let R) C R be a compact open subgroup containing X
(which is possible by Remark 12.16). Then Ry := (o kRGk™" is a compact subgroup normalized
by K. By construction, R; contains Ry and hence is open.

We prove (b). Suppose f € (indg/mQ W)(R). Since R is the union of its compact open subgroups,
we find a compact open subgroup Ry C R with f € (inde),mQ W)(Rp). By Lemma 7.8, we find
p(eRo)fg = (p(eRo)f) (g) = 0.

We now prove the converse direction. Let K C ) be a compact open subgroup fixing f.
As f has compact support, we find gi,...,g, € Q with Supp(f) = ._,(P' N Q)g;K. By (a),
applied to a compact open subgroup Ry containing Ry, ..., Ry, , we find a compact open subgroup
R1 C R which is normalized by K and contains Ry, for all i. Then p(er,)fy, = p(er, * er,,)fg: =
pler,)p(er,,)fq; = 0 for all i, where we have used Proposition 7.4(a) for the first equality. Let now
g € @Q be arbitrary. If f(gz) = 0 for all z € Ry, then p(er,)fy = 0. Otherwise, we find z € Ry,
ze€P'NQ, ke K,and 1 < i< r such that gz = xg;k. Since K normalizes R; and fixes f, and
because pp is left invariant, we compute

vol(Ry; i) - plem ) fo /R f(agikz"y) 1, (v) dun(y) = /R F(xgiky) L, (29) dpin(y)

o(2) /R F(gikyk VYL, (v) dpir(y)

5r(k) 1o (z) /R F(g)La, (k" k) dpi(y)
= §R(k)_la(x)p(631)f9i =0.

This shows p(er,)f = 0 and hence f € (indg,ﬂQ W)(Ry) C (indg,ﬂQ W)(R) by Lemma 7.8. O
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Let now f € indg,mQ W with f = 0, and let ¢ € Q be fixed but arbitrary. The function
(p(9)f)|r has compact support, and hence we find a compact open subgroup Ry € R such that
Supp(p(9)f)|r € (P'N R)Ry. By the definition of v we compute

/ F@g) L, (2) dun(z) = / / F@yg) 1 ry (29) dupron(@)dv(y)
R (P'NR\R JP'NR

- / / F09) Lo () dptpro(z)du(y)
(P'AR)\R JP'NR

- / vol(P' N Roy s prrr) - flyg) dv(y)
P'NR)\R
=vol(P' N Ro; ppnr)f(g) =0

P'NR)Ry and that, for y; € P'NR and

where for the fourth equality we have used Supp(p(g)f)|r < (
=0p ﬂR(yl) VOI(P/ﬂRo) = VO](P/ﬂRo),

Y2 € Ry, we have vol(P' N Ry(y1y2) ") = vol(P'NRoy; )
since P’ N R is unimodular. We deduce

vol(g™" Rog pur) - pleg—1Rqg) fg =/ f(97)1y-1Ryqg(x) dup(z)
/ flgzg™" - g)1g,(gzg™") dpr(x)

— Snly / F(29) L, (2) dpr(z) € W(R).

As R is the union of its compact open subgroups, we find B, C R containing ¢~! Ryg, and such that
pleg-1Rrog) fg € W(R1). We now have p(er,)fq = per,)p(eg-1ryg)fg = 0. Hence, the criterion in
Claim 2(b) is satisfied and shows f € (indg,mQ W)(R). This shows that ® is injective and finishes
the proof of (c). O

Using Claim 1, we now compute

Fi/Fi1 = Jr(05"? @ indp"?(61% @ Inf} o)) (Claim (a))

~ Jr(65"% ® mdQ,IP o w6 @ wi  InfY &) (Claim (b))
= ind}ip,, (0P w5 @8 @ w pn, gy (IfE 7)) (Claim (c))
~ ind,, w; Pw;NL (56}1/2 7161/2 ® 0 ® Inf *1fW1r?LL i;lJmeiRw{l (@),

where § = ‘S(w*le R ® 6 ,1P O viewed as a character of w;lei N L. One finally needs to

show that

—1/2 —151/2 _1/2 1/2
6@ ® Wiy §P ® 0= 5w,;1Pw,ﬂL ® 6 1M iNQ’
from which we obtain F;/F;_1 & /LL—IPw AL Wix r%mwiszl (o). O
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§19. Finiteness Theorems

Recall G = M,, for some partition n = (nq,...,n,) of n. Recall from Theorem 14.3(d)/(c) that the

functor ig preserves admissibility and TIGD preserves finite generation. In this section, we will show
that ig preserves finite length, and rg preserves admissibility and finite length.

Theorem 19.1. Let P = MN be a parabolic subgroup of G, and let (W, o) € Rep(M) have finite
length. Then i%(W, o) has finite length.

Proof. Let g € G such that gPg~" is standard. The map

iG(W.0) — i, (W g.0),
fr—=Tve flg™')]

is clearly an isomorphism. Hence, we may assume from the start that P is standard.

Since % is exact by Theorem 14.3(b), we may assume that (W, o) is irreducible.

By Lemma 15.2 there exists a proper parabolic subgroup @@ = LR of M and a cuspidal repre-
sentation (F,7) € Rep(L) such that (W,0) C zg (E, 7). Note that QN is a parabolic subgroup of
G with Levi L and unipotent radical RN. Now, Theorem 14.3(e) shows i%(W, o) C i% zg(E, T)
iSN(E, 7). It suffices to show that igN (E, 7) has finite length, and hence we may assume from the
start that (W, o) is irreducible and cuspidal.

We prove the assertion by descending induction on r. If » = n, then n = (1,1,...,1) so that
G = T, and there is nothing to show. Assume now r < n. Denote Pi,..., P,_, the maximal
parabolic subgroups of G with Levi subgroups Mj, ..., M,_,, respectively; note that each M;
is of the form M/, where n’ = (n1,...,ng_1,m,Ng — M, Ngy1,...,n,) for some 1 < a < r and
1<m<ng In pgrticular, the induction hypothesis is applicable for each M;. By the Geometrical
Lemma 18.2, and because (W, o) is cuspidal, rgj iIGD W has a finite filtration with graded pieces of
the form

il]\lePwﬁM‘(VV’ w*_la)7 (315)

where w € {w c WhPi ’ M C wMjwfl}. By the induction hypothesis, each representation (3.15)
has finite length. It follows that frgj ig(W, o) has finite length, say [;, forall j=1,...,n —r.

Write (V,7) == i%(W,0), and let {0} = V5 C Vi € --- € V; = V be a finite filtration. As each
r% is exact (Theorem 14.3(b)), we obtain for all j a filtration

{O}Qrnglgrgjvggn-grgjvl:rgjigw

For each 1 < i < I, Corollary 17.10 shows that V;/V;_; is not cuspidal; hence, there exists j such
that 'r%_ (Vi)/rgj (Vie1) & rgj(Vi/Vi_l) # {0}. It follows that | < Iy + - - 4 lp_,, hence 5 (W, o)
has finite length. O

Theorem 19.2 (Jacquet’s Lemma). Let P = MN be a parabolic subgroup of G and let (V,m) €
Rep(G) be admissible. For every m > 1 the projection pry: V —» Jn(V) induces a surjection
VEn — Jy(V)EmOM,
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Proof. Fix A\ € A*T(M,G) (see Notation 12.14) and put K,,, = K, N N, K%, = K,,, N M and
K} = K,, N N, see Proposition 12.15. It is clear that pry(VE=) C Jn(V)E . For each I > 0, we
have a decomposition

H =K, "NE =K KO (AN KA,
Since also K,, = K} K% K., the inclusion K;;/A\K}+\~! — K,,/H; is bijective. Now, for all

v e VA HN e have m(ex, )m(A)v = [KTIHL] ekt agcia-t T(uA)v € VEm and hence, since
N acts trivially on Jy(V),
v\ pry(v) = pI’N(ﬂ'(eKm)ﬂ'()\l)’U) € pry (VEm). (3.16)

As VEn C V2 HN it follows that an(A) pry(VEnm) C pry(VEm). Since V is admissible,
pry (VEm) is finite dimensional, and hence 7y () is invertible on pry (V™). We deduce

(A pry (VE™) = pry (VKm) for all [ € Z. (3.17)

Let 7 € Jy(V)Em = Jn(V)En K Since (_)5mEn is exact by Lemma 5.8, we find v € VEnEn

with pry(v) = ©. Using Proposition 12.15, we see that v is fixed by A~'K . A! for some [ > 0, and
hence v € VA HiX' | By (3.16), we find

7TN()‘)lﬁ =pry (W(exm)w()\l)u) c prN(VKrn)7
and from (3.17) we deduce © € mx(\) ! pry (VEm) = pry (VE=). O

Corollary 19.3. Let (V,7) € Rep(G) be admissible. For each parabolic subgroup P = MN of G,
the representation rG(V, ) € Rep(M) is admissible.

Proof. Immediate from Theorem 19.2. O

Lemma 19.4. Let P = MN be a standard parabolic subgroup of G. Let (V,7) € Rep(G) and
suppose that V is generated by VEm for some m > 1. Then Jy (V) is generated by Jn(V)EmM gs
an M -representation.

Proof. By the Iwasawa decomposition 12.7 we have G = PK. As K,, is a normal subgroup in
K, we have w(k)VEm = VEm for all k € K, and hence it follows that VXm generates V as
a P-representation. The image of VE= under the P-equivariant surjection V' — Jy (V) lies in
In(V)EmNM - As N acts trivially on Jy (V) and P/N 22 M, the claim follows. O

Proposition 19.5. Suppose (V,7) € Rep(G) is generated by VEm for some m > 1. Then every
subquotient (W, o) of (V, ) is generated by WHm .

Proof. Step 1: We show Wm £ {0} for all non-zero subquotients (W, o) of (V, 7). There exists
a (not necessarily proper) parabolic subgroup P = M N of G such that G (W, o) is cuspidal. By
Lemma 19.4, rG(V, 7) is generated by its K,,,NM-fixed vectors. Since r§ is exact by Theorem 14.3(b),
rG(W,0) is a cuspidal subquotient of r&(V, 7). Hence, Corollary 17.9 shows r$& (W, o)K="M £ {0},
By Jacquet’s Lemma 19.2, the map W m —s Jy (W)EnNM o£ 10} is surjective. Hence W= #£ {0}.

Step 2: Let (W,o) be a subquotient of (V,7), and let W’ C W be the subrepresentation
generated by W= By construction, we have (W’')&m = WEn_ As K, is exact by Lemma 5.8, we
deduce (W/W")Em = {0}. As W/W' is a subquotient of (V,7), Step 1 implies W/W' = {0}, that
is, W =W. O
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Theorem 19.6 (Howe). Let (V,7) € Rep(G). Then (V,7) is finitely generated and admissible if
and only if (V,7) has finite length.

Proof. Suppose (V,7) has finite length, say . We show by induction on [ that (V,7) is finitely
generated and admissible. If [ = 1, then (V) is generated by any non-zero vector and is admissible
by Theorem 15.4. If | > 1, we find a G-invariant subspace W C V such that W and V/W have
length < I. By induction hypothesis, W and V/W are finitely generated and admissible. From the
short exact sequence 0 - W — V — V/W — 0 it follows easily that V is finitely generated. For
each open subgroup H C GG we have an exact sequence

0—WH S vHE 5 (v/Ww)H,

where WH and (V/W)H are finite dimensional by induction hypothesis so that also V¥ is finite
dimensional. Therefore, (V, ) is admissible.

Suppose now that (V,7) is admissible and finitely generated by, say, v1,...,v;. Fix m > 1 such
that vq,...,v € VEm. Let now

(0= CViCVhe - CVi=V
be a filtration by G-invariant subspaces. From Proposition 19.5 (and Lemma 5.8) we deduce
{0} c Vi Qv g g Vi = R

(because VX /VEm = (V;/V;_1)Km # {0} for all 7). Since, V is admissible, we have s < dim VEm <
oo. Hence, V has finite length. O

Corollary 19.7. Suppose (V,7) € Rep(G) has finite length. Let P = M N be a parabolic subgroup
of G. Then rG(V,7) € Rep(M) has finite length.

Proof. By Theorem 19.6, we have to show that if (V) is admissible and finitely generated, then
r&(V, ) is admissible and finitely generated. But this is Corollary 19.3 and Theorem 14.3(c). [

§20. Cuspidal Data

Recall G = M,, for some partition n = (nq,...,n,) of n. We have obtained in Theorem 17.8 a
decomposition

Rep(G) = Rep(G)cusp X Rep(G)ing.
Our aim in this section is to describe Rep(G)ing in terms of cuspidal representations of Levi subgroups

of G.

Definition 20.1. A cuspidal datum is a pair (M, p), where M C G is a Levi subgroup and p €
Irreysp(M). We say two cuspidal data (M, p) and (M, p’) are associated, and write (M, p) ~ (M’ p’)
if there exists g € G such that

gMg~t =M’ and g«p = p' in Rep(M’).

The relation ~ is an equivalence relation. We denote (M, p)e the equivalence class of (M, p) and
put
Q(G) = set of equivalence classes (M, p)g of cuspidal data.
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Lemma 20.2. Let 7 € Irr(G). There exists a standard parabolic subgroup P = MN of G and a
cuspidal datum (M, p) such that = < i% p.

Proof. This is Lemma 15.2. O

Theorem 20.3. Let P=MN, Q = LR, and Q' = L' R’ be parabolic subgroups of G, and let (L, o)
and (L', 0") be cuspidal data. Fiz (V,7) € Rep(G).

(a) Let p € Rep(M) be a cuspidal representation. If (V,7) is a subquotient of i%p and o €
JH(rg ), then o is a subquotient of w.p for some w € Wg with wMw™" = L. In particular,
if p is irreducible, then (L,o) ~ (M, p).

(b) Suppose (V, ) is irreducible. If o € JH(rg ) and o’ € JH(rg, m), then (L,o) ~ (L',0"). In
particular, there exists a unique (L,0)g € Q(G) such that 7 is a subrepresentation/subquotient
of zg o for some parabolic subgroup Q C G with Levi L.

Proof. We first argue that (b) follows from (a). By Lemma 20.2 there exists a standard parabolic
subgroup P = M N of G and a cuspidal datum (M, p) such that = — ig p- The hypotheses together
with (a) imply (L, o) ~ (M, p) ~ (L', o").

It remains to prove (a). Note that 7(g) induces an isomorphism g, rg = T?ng 1 ™. Replacing
(L,o) with (gLg™!, g.0) if necessary, we may assume that @ is standard. As in the proof of
Theorem 19.1 we may assume that P is standard. Since 1“8 is exact by Theorem 14.3(b), we have
o € JH(rgm) C JH(r§ i p). Put (E,7) =r§ i p, so that o € JH(Eeusp). By the Geometrical
Lemma 18.2, ¢ is a subquotient of

.L _
(lwflpwﬂL Wy ! T%ﬁw@w*1 p) cusp (318)

for some w € WPQ. Since p is cuspidal, we have M NwQw™' = M and hence M C wLw™" (see
Lemma 18.1). Corollary 17.10 shows L = w=*Pw N L and hence L C w~'Mw. Together we obtain
w™ Mw = L, and (3.18) simplifies to w; !p, which is what we wanted to show. O

Ezxercise. (V,m) € Irr(G) is called supercuspidal if for all proper parabolic subgroups P = M N of
G and all (W, o) € Rep(M) we have w ¢ JH(i% 0). Show that (V,7) € Irr(G) is supercuspidal if
and only if it is cuspidal.

Definition 20.4. Theorem 20.3 supplies a well-defined map

Sc: Irr(G) — Q(G),

7 — (M, p)g with p € JH(r§ ) for
some parabolic P C G with Levi M,

called the (super)cuspidal support.
Note that Theorem 20.3 also shows that Sc(r) = (M, p)¢ if and only if = € JH(i% p) for some
parabolic P with Levi M.

The definition suggests that Q(G) plays an important role in describing the category Rep(G).
We therefore need to study how strong the relation is between Irr(G) and Q(G) as exhibited by the
map Sc. We then show that Q(G) is naturally a disjoint union of C-varieties.
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Lemma 20.5 (Obsolete). Let (V,m) € Rep(G) have finite length, and let (W, o) € Irreus, (G) such
that W € JH(V). Then there exists a G-equivariant surjection V. —» W.

Proof. By Corollary 11.14, (W, o) is (projective and) injective in Rep(G°). Hence, if V' C V is a
G-invariant subspace and V' — W a surjection, then the restriction map

X = Homgo (V, W) — Homgo (V',W) =Y

is surjective. From Y # {0} we deduce X # {0}. By Proposition 17.3, (V, mgo) and (W, 0go) have
finite length. By Lemma 16.2, X is finite dimensional. Define a group action 7: G — Autc(X) via
7(9)f = o(g) o fom(g™t), where g € G and f € X. We need to show X # {0}.

As G acts trivially on X and Y, the G-action factors through the abelian group G/G° =
A(G) 2 Z". For each A(G)-representation (E, k) and all x € X(G) we denote

E, = {v € E|for all g € A(G) there exists | > 0 such that (r(g) — x(9))'v =0}

the generalized eigenspace of E. If FE is finite dimensional, we have a Jordan decomposition
E= @XGX(G) E,, where E, # {0} for only finitely many x € X(G). The surjectivity of ¢ implies
o(X,) =Yy, for all x € X(G). In particular, ¢(X1) = Y1 # {0}, where 1 € X(G) denotes the
trivial character. This shows X; # {0} and hence also X # {0}. O

Proposition 20.6. The map Sc: Irr(G) — Q(G) is surjective with finite fibers.

Proof. We prove surjectivity. Let P = M N be a parabolic subgroup of G and let (M, p) be a cuspidal
datum. Let 7 be an irreducible subquotient of i p. Then Theorem 20.3 shows Sc(r) = (M, p)c.

We now prove that every fiber is finite. Fix (M, p)g € Q(G), and let (V,7) € Sc™*((M, p)a).
By Lemma 20.2 there exists a cuspidal datum (M’, p') and a parabolic subgroup P’ = M’N’ of G
such that m C ig, p'. Then Theorem 20.3 shows (M’,p') ~ (M, p), i.e., there exists g € G with
M =gM’'g=*and p = g,p'. Put P := gP’g~'. We have isomorphims %, p' 2 ¢, 3%, p’ = 3% p, where
the first map is induced by the action of g=! and the second map is given by f — [y — f(g71v)].
Observe that P lies in the set P(M) of all parabolic subgroups of G with Levi M. We deduce that
the cardinality of Sc_l((]\J7 p)c) is bounded above by > pep(an) (% p), which is finite because

P(M) is finite by Exercise 12.12 and each ig p has finite length by Theorem 19.1. O

Ezercise. Let M be a Levi subgroup in G and recall the set P(M) of parabolic subgroups of G with
Levi M. Fix (W, p) € Irrcysp(M) and let P € P(M).

(a) Show that for every 7 € JH(3% p) there exists Q € P(M) such that = C 'LS p-
(b) Show that Homg (i% p, zg p) # {0} for all Q € P(M).

Definition 20.7. We say two cuspidal data (M,p), (M’ p') are inertially equivalent, written
(M, p) =~ (M', p'), if there exist g € G and x € X(M') such that gMg=' = M’ and p' = x ® g.p.
We denote [M, p]g the inertial equivalence class of the cuspidal datum (M, p) and put

B(G) := set of inertial equivalence classes [M, p]g of cuspidal data.

Observe that (M, p) ~ (M’, p') implies (M, p) ~ (M, p'), and hence we have a natural surjective
map

T: QG) —» B(G).
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Proposition 20.8. The set Q(G) of equivalence classes of cuspidal data is the disjoint union of
C-varieties, and the fibers of T are the connected components of Q(G).

Proof. Let M be a Levi subgroup in G and consider the group W(M) = Ng(M)/M. Since

m(g): gup =5 p is an M-equivariant isomorphism for each g € M and p € Irreysp (M), the action
of Ng(M) on Irreys, (M) factors through W(M). Note that by Exercise 12.12(d) the group W(M)
is finite. Recall the action of X (M) = Homg,, (M /MY, C*) on Irreys,(M) given by x - p = x @ p
for all x € X(M) and p € Irrcysp(M). The orbits for this action are by definition the cuspidal
components. Denote I; the set of cuspidal components so that

Irreup (M) = | | D.
Dely

We now investigate the action of W(M) on Irreysp(M). Let D € Ip and p € D. Since w.(x ® p) =
weX @wyp for all w € W(M) and x € X (M), it follows that wD is a cuspidal component. Therefore,
W(M) acts on Ips. Let Jyy C Iny be a complete set of representatives for the orbit space Ips /W(M).
For each D € Ip; we denote W(D) = {w € W(M) |wD = D} the stabilizer of D in W(M). Then
W(D) acts on D and we have a bijection

Irreus,(M)/W(M) 2 | | D/W(D).
DeJy

Each D € Jys is a connected C-variety (Definition 17.5), hence so is the quotient D/W(D) by a
finite group (Proposition 17.6). It follows that Irre,s,(M)/W(M) is a disjoint union of C-varieties.

Let now My, ..., M; be a complete set of representatives for the standard Levi subgroups of G
up to conjugation; then every Levi subgroup of G is conjugate to precisely one of the M;. The
above discussion shows that the bijection

! !
UG) = | | Trreusp (M) WML 2| | | | D/W(D)
i=1 i=1DeJn,
exhibits (G) as a disjoint union of the connected C-varieties D/W(D).
Finally, let (M, p) be a cuspidal datum and denote D the cuspidal component containing p. It
is clear from the definition that Y~*([M, p]¢) = D/W(D), which proves the last assertion. O

Definition 20.9. The function Si: Irr(G) — B(G), defined by the commutativity of the diagram

Irr(G) —2° Q(G)

is called the inertial support. Let s € B(G) and let Q = T71(s) C Q(G) be the corresponding
connected component. We put

Irr, (G) = Irrq(G) == Si~'(s).
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§21. The Bernstein Decomposition Theorem

Recall G = M,, for some partition n = (n1,...,n,) of n. We prove in this section the main result
of this lecture course.

We consider the category

Cusp(G) = 11 Rep(M)cusp-

P=MN
standard parabolic

The objects are tuples (W, par) p, where each (Wyy, par) is a cuspidal M-representation, and for
(War, pm) e, (En,on) p € Cusp(G) we put

Homcusp(c) (War, par) py (Enr, o0) p) = H Homu (W, par), (Ear, oa1))-
P

Note that Cusp(G) is an abelian category, because kernels and cokernels of morphisms are computed
componentwise. We also consider two functors

R: Rep(G) —— Cusp(G) :1,

(V.m) —— (rE(V. T)eusp) p»

DBp i W, par) < (War, par)p-

Lemma 21.1. (a) For all (V,7) € Rep(G) and (W, par)p € Cusp(G) we have a natural iso-
morphism

Homcusp(a) (R(V, m), (War, par) p) = Home ((V, 7), W, par) p)-

In other words, R is left adjoint to 1.

(b) The functor R is exact and faithful, that is, for all (V,m),(V’',7') € Rep(G) the induced map
HOHIG ((Va 7T), (Vlv 7/)) — HomCusp(G) (R(V, W)a R(Vla W,))

is injective. If (V, ) € Rep(G) is finitely generated, then each component of R(V,m) is finitely
generated.

(c) For all (V,7) € Rep(G), the map
nv: (V,m) — IR(V, 7)

corresponding to idg(v,r) under the bijection in (a) is injective.
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Proof. In (a), we compute

HomCusp(G) (Rﬂ—v (pIW)P) = H Hom ((Tlcj W)Cusp» pM)

P

= H Hom (rg T, M) (Theorem 17.8)
P

= H Homg (r, i pum) (Theorem 14.3(a))
P

=~ Homg <7r, @zg pM)
P
= Homg (ﬂ,I(pM)p),

where for the first isomorphism we argue as follows: By Theorem 17.8, we have a decomposition
TIGD = (TIGD ) cusp P (TIGD 7)ind, Where no irreducible subquotient of (rg 7)ina is cuspidal. For each M-
equivariant map f: r&m — pys we thus have f((r$ m)ina) = {0} by Lemma 16.5(b) and because pa;
is cuspidal. Hence, f is uniquely determined by its restriction to (’l"g T)cusp- Lhe last isomorphism

holds, since the direct sum is finite.

We now prove (b). By Theorem 14.3(b) the functors r§ are exact. From Theorem 17.8 it also
follows that the functor (W, p) = (Weusp, peusp) is exact. Hence R is exact. If (V,7) € Rep(G) is
finitely generated, then 7% (V, 7) is finitely generated by Theorem 14.3(c). But then also its quotient
(rG(V,m))cusp (Theorem 17.8) is finitely generated. It remains to prove that R is faithful. We
first show that (V,7) # {0} implies R(V,7) # {0}. But this is clear: Let P = M N be a minimal
standard parabolic subgroup such that 7% (V,7) # {0}. Then r§(V, ) is cuspidal, and hence the
P-component of R(V, ) is non-zero. Let now f: (V,7) — (V',7’) be a non-zero G-equivariant map.
We have to show that R(f): R(V,n) — R(V’,7’) is non-zero. Since R is exact, we have

R(V)/KerR(f) = R(V)/R(Kex(f)) = R(V/Kex(f)) # {0},
and this shows R(f) # 0.
For part (c), let (V,7) € Rep(G) and denote ¢: Kerny < V the inclusion of the kernel of 7y

into V. Since the isomorphism in (a) is natural, we have a commutative diagram

Homg (V, IR(V)) ————— Homeysp(y (R(V), R(V))

l loR(L)

Homg (Ker v, IR(V)) —=— Homcusp () (R(Ker nv), R(V)) .

From 1y o+ = 0 we deduce R(¢) = idg(y) oR(¢) = 0. As R is faithful, we deduce + = 0 which means
Kerny = {0}. Hence, ny is injective. O

Recall that for every inertial equivalence class 5 € B(G) we denote Irr,(G) = Si~'(s) the set
of all irreducible smooth representations (V,7) € Rep(G) for which there exists a cuspidal datum
(M, p) with s = [M, p]¢ such that p € JH(rE 7) for some parabolic subgroup P C G with Levi M.
We denote

Rep(G)s = Rep(Q)er,

the full subcategory of Rep(G) consisting of the (V, ) such that JH(7) C Irr,.
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Theorem 21.2 (Bernstein Decomposition Theorem). One has

Rep(@) = ] Rep(G).
s€B(G)

Proof. Step 1: Let P = MN be a parabolic subgroup of G, and let (W, o) € Rep(M)cusp. We show

SW)= P GEW)s.

seB(G)

As (W, o) is cuspidal, Theorem 17.8 shows W = @, Wp, where D runs through the cuspidal
components of Irrcys,(M). The natural G-equivariant homomorphism

i wp) =g (@ WD) (3.19)
D D

is bijective: Indeed, injectivity is obvious from the definition, so we need to show surjectivity. Let
fe ig (@D WD). Let H C G be a compact open subgroup fixing f. As P\G is compact by the
Iwasawa decomposition 12.7, the coset space P\G/H is finite. Let g1,...,9; € G be a system of
representatives for P\G/H. Let D, ..., Dy be cuspidal components such that f(g;) € @le Wp;,
for all 1 <4 <. For each g € G, we find x € P, h € H and ¢ such that g = zg;h; then

k
Flg) = f(zgih) = 67 (@)o(2) f(9:) € Dwo,.

which shows f € % (@le Wp,) = @,];:1 ig(WDj) C @, i%(Wp). By Theorem 20.3 we have
iS(Wp) C (% W)s, where s = [M, p]¢ for some (hence all) p € D. But then (3.19) shows that we
have an equality, which finishes the proof of Step 1.

Step 2: Proof of the theorem. Let (V,7) € Rep(G). Lemma 21.1 supplies an injection

Ve IR(V) = @ B ((rEV)eus)-

P=MN
standard parabolic

By Step 1 we have IR(V) = @,(IR(V))s, and Lemma 16.7 shows V = , V. O
We give a characterization for the objects in the block Rep(G)s, for s € B(G).

Corollary 21.3. Let P = MN be a standard parabolic subgroup of G, let D C Irreysp(M) be a
cuspidal component. Fix p € D and put s := [M, p|c. For (V,m) € Rep(G), the following assertions
are equivalent:

(i) (V,7) € Rep(G)s;

(ii) (V,m) is a subrepresentation of g ig(WQ,aQ), where the direct sum runs through the stan-
dard parabolic subgroups Q = LR of G such that L = gMg~" for some g € G, and where
(Wq,0q) € Rep(L)g.p-

(iwi) (V,7) is a subquotient of a representation as in (ii);
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(Z,U) rg(‘/? 7T) € HwGW(M) Rep(M)’w*D7
(v) Whenever QQ = LR is a standard parabolic subgroup of G and D' C Irrcys,(L) is a cuspidal

component such that (gLg~*,g.D") # (M, D) for all g € G, then the component of rg(V7 )
in Rep(L)pr is zero.

Proof. Since each ig(WQ, 0q) as in (ii) lies in Rep(G)s, and Rep(G)s is closed under subquotients,
the implications (ii) = (iii) = (i) are clear. In the proof of Theorem 21.2 we have seen that

VEIR(WV) = P ig((rgV)p),
(Q’D,)

where the direct sum runs through the pairs (Q, D), where @ = LR is a standard parabolic subgroup
of G and D" C Irrcusp(L) is a cuspidal component. Since IR(V'), has the form described in (ii), we
obtain the implication (i) = (ii).

Finally, the implications (v) = (iv) = (i) = (v) are clear from the definitions. O

Let now P = M N be a parabolic subgroup of G. A cuspidal datum (L, o) of M is also a cuspidal
datum of G. We obtain maps
iam: QM) — Q(G), iam: B(M) — B(G),
(L,o)u — (L, 0)c, [L,0]lm — [L,0]c.

Corollary 21.4.

(a) Let s € B(M) and (W, p) € Rep(M)s. Then i%(W, p) € Rep(G)ig i (s)-
(b) Lett€ B(G) and (V,7) € Rep(G)¢. Then r&(V, ) € HﬁEiZ;}u(f) Rep(M)s;.

Proof. Part (a) follows from the equivalence (i) <= (ii) in Corollary 21.3 and the transitivity of 5%
(Theorem 14.3(e)), whereas (b) follows from the equivalence (i) <= (iv) in Corollary 21.3 and the
transitivity of r.

Alternatively, check this directly using Theorem 20.3 (and Theorem 21.2). O






Index

absolute value, 3
p-adic, 3
discrete, 6
non-archimedean, 4
trivial, 3

admissible, 39

affine variety, 75

Bernstein Decomposition Theorem, 94

Borel subgroup, 51
Bruhat decomposition, 52
Burnside’s Theorem, 66

Cartan decomposition, 50
Cauchy sequence, 8
center, 56
central character, 43
character, 18
modulus, 22
characteristic function, 20
clopen, 13
compact induction, 36
complete, 8
completion, 8
congruence subgroup, 12
contragredient, 38
convergent, 8
convolution, 24
countable at infinity, 29
cuspidal, 64
cuspidal component, 74
cuspidal datum, 88
associated, 88

decomposition
Bruhat, 52

97

Cartan, 50
Iwasawa, 52
discrete valuation, 6
discretely valued, 6
division algebra, 39

elementary matrix, 52
exact, 19

faithful functor, 92
finite length, 70
formal degree, 45
Frobenius Reciprocity
for compact induction, 37
for smooth induction, 34
Fubini’s Theorem, 23

G-equivariant, 17
Galois, 15

Galois group, 15
group algebra, 20

Haar measure
left, 20
right, 20
semi-invariant, 23
Hecke algebra, 24

idempotent, 24

induction
compact, 36
smooth, 34

inertial support, 91
inertially equivalent, 90
irreducible, 19

isotypic component, 33
Iwasawa decomposition, 52



98

Index

Jacobson’s Density Theorem, 40
Jacquet functor, 35, 58
Jacquet’s Lemma, 86
Jordan—Holder factor, 70

left translation, 18

length, 70

Levi subgroup, 53
standard, 53

locally profinite, 12

Mackey decomposition, 36
matrix coefficient, 42
module

smooth, 25
modulus character, 22

non-archimedean field, 4
normalizer, 52

opposite parabolic, 53
Ostrowski’s Theorem, 4

parabolic, 53

parabolic induction, 60

parabolic restriction, 61

parabolic subgroup
standard, 53

partition, 53

perfect, 11

permutation matrix, 50

profinite, 12

representation, 17
compact, 41
smooth, 17

residue field, 7

restriction, 19

right translation, 18

Schur’s Lemma

general version, 39

strong version, 43

weak version, 32
semi-invariant Haar measure, 23
semisimple, 30
Separation Lemma, 29
smooth dual, see contragredient

smooth induction, 34
split

a category, 72

an object, 72
stabilizer, 17
supercuspidal, 61, 89
supercuspidal support, 89
support, 18
symmetric group, 50

torus, 51
totally disconnected, 5

ultrametric triangle inequality, 4
uniform admissibility, 66
uniformizer, 7

uniformly locally constant, 34
unimodular, 41

unipotent radical, 52

unramified character, 73

valuation ring, 7
Vedenissov’s Theorem, 13
volume, 22

Weyl group, 52



Bibliography

[Car85] Roger William Carter. Finite groups of Lie type: Conjugacy classes and complex characters.
Pure Appl. Math., 44, 1985. Cited on p. 78,

[Cas95]| Bill Casselman. Introduction to admissible representations of p-adic groups. unpublished
notes, 1995. URL: https://personal .math.ubc.ca/ cass/research/pdf/p-adic-book.
pdf. Cited on p. 82,

[Neul3] Jiirgen Neukirch. Algebraic number theory, volume 322. Springer Science & Business Media,
2013. doi:10.1007/978-3-662-03983-0. Cited on p. 4,

[Put]  Andrew Putman. The Jacobson Density Theorem. Available at https://www3.nd.edu/
“andyp/notes/JacobsonDensity.pdf. Cited on p. 40,

[Renl0] David Renard. Représentations des groupes réductifs p-adiques. Société mathématique de
France Paris, 2010. URL: http://www.cmls.polytechnique.fr/perso/renard/Padic.
pdf. Cited on p. 81,

99


https://personal.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://personal.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://doi.org/10.1007/978-3-662-03983-0
https://www3.nd.edu/~andyp/notes/JacobsonDensity.pdf
https://www3.nd.edu/~andyp/notes/JacobsonDensity.pdf
http://www.cmls.polytechnique.fr/perso/renard/Padic.pdf
http://www.cmls.polytechnique.fr/perso/renard/Padic.pdf

	Contents
	Local Fields and Locally Profinite Groups
	Non-Archimedean Fields
	Completion
	Local Fields
	Locally Profinite Groups

	Smooth Representations of Locally Profinite Groups
	First Definitions and Examples
	Haar Measures
	The Hecke Algebra
	Smooth Representations of Profinite Groups
	Smooth and Compact Induction
	The Contragredient and Admissibility
	Compact Representations

	Smooth Representations of p-Adic Groups
	Decompositions of GL(n,F)
	The structure of H(G,Km)
	Parabolic Induction and Parabolic Restriction
	Cuspidal Representations and Uniform Admissibility
	Interlude: Decomposition of Categories
	Cuspidal Components
	The Geometrical Lemma
	Finiteness Theorems
	Cuspidal Data
	The Bernstein Decomposition Theorem

	Index
	Bibliography

