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Chapter 1

Local Fields and Locally Profinite Groups

§1. Non-Archimedean Fields

Recall the archimedean absolute value | · |∞ on Q given by |x|∞ = x if x > 0 and |x|∞ = −x if
x < 0. The function | · |∞ : Q→ R>0 satisfies the following properties, where x, y ∈ Q:

(A1) |x|∞ > 0, and |x|∞ = 0 if and only if x = 0;
(A2) |xy|∞ = |x|∞ · |y|∞;
(A3) |x+ y|∞ 6 |x|∞ + |y|∞.

How many other ways are there to “measure” rational numbers? Besides the trivial absolute value,
defined by |x|triv = 1 if x 6= 0 and |x|triv = 0 if x = 0, there are many other absolute values which
are of number theoretic interest.

We fix a prime number p and measure any integer x ∈ Z by the largest power of p that divides
x; then x is called “p-adically small” if x is divided by a large power of p. For example, 64 = 26 is
2-adically much smaller than 5. More precisely:

Definition 1.1. For each x ∈ Z r {0} we put

valp(x) := max
{
i ∈ Z>0

∣∣ pi divides x in Z
}
.

For each x ∈ Qr {0}, we choose a, b ∈ Zr {0} with x = a
b and put valp(x) := valp(a)− valp(b). By

convention, we set valp(0) :=∞.
Exercise. Check that valp(x) = valp(a) − valp(b) does not depend on the choice of a, b ∈ Z with
x = a

b . Show that the function valp : Q→ Z ∪ {∞} satisfies the following properties:

– valp(x) =∞ if and only if x = 0;
– valp(xy) = valp(x) + valp(y) for all x, y ∈ Q;
– valp(x+ y) > min{valp(x), valp(y)} for all x, y ∈ Q.

We call the function

| · |p : Q −→ R,

x 7−→ |x|p := p− valp(x)

the p-adic absolute value.

3



4 Chapter 1. Local Fields and Locally Profinite Groups

Exercise. (a) The p-adic absolute value on Q satisfies the properties (A1), (A2) and

(A3’) Ultrametric triangle inequality: |x+ y|p 6 max{|x|p, |y|p}, for all x, y ∈ Q.

Note that (A3’) implies (A3).

(b) For each x ∈ Q× one has |x|∞ ·
∏
p|x|p = 1, where the index in the product runs through all

prime numbers.

(c) |x|p 6 1, for all x ∈ Z. In particular, | · |p does not satisfy the archimedean property.

As a side note, we mention the following important result:

Ostrowski’s Theorem. Let | · | be a non-trivial absolute value on Q. Then one of the following
cases holds true:

(i) The function | · | is a p-adic absolute value, that is, there exists a prime number p and ρ ∈ R>1

such that |x| = ρ− valp(x) for all x ∈ Q;

(ii) There exists α ∈ R>0 such that |x| = |x|α∞ for all x ∈ Q.

Proof. See [Neu13, (3.7) Proposition].

The p-adic absolute value on Q is a special case of a non-archimedean absolute value: Let F be
a field.

Definition 1.2. A function | · | : F → R is called a non-archimedean absolute value if for all x, y ∈ F
we have:

(NA1) |x| > 0, and |x| = 0 if and only if x = 0;

(NA2) |xy| = |x| · |y|;
(NA3) |x+ y| 6 max{|x|, |y|} (ultrametric triangle inequality).

The tuple (F, | · |) is called a non-archimedean field .

By (NA1) and (NA2), the map F× → R×>0, x 7→ |x|, is a group homomorphism. In particular,
|±1| = 1. We will always assume that | · | is non-trivial, that is, there exists x0 ∈ F with |x0| 6= 0, 1.

The absolute value | · | endows F with the structure of a topological space: The sets

D<ε(x) := {y ∈ F | |y − x| < ε} (x ∈ F , ε ∈ R>0)

form the basis of a topology on F .

Lemma 1.3. Let (F, | · |) be a non-archimedean field.

(a) The function | · | : F → R is continuous.

(b) The functions

+: F × F −→ F, (x, y) 7−→ x+ y,

· : F × F −→ F, (x, y) 7−→ xy,

F× −→ F×, x 7−→ x−1

are continuous. In other words, F is a topological field.
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Proof. The proof only uses (A3). For x, y ∈ F we compute

|x| = |(x− y) + y| 6 |x− y|+ |y|.

Hence |x| − |y| 6 |x− y|. From |y − x| = |x− y| we deduce∣∣|x| − |y|∣∣∞ 6 |x− y|,

where | · |∞ is the usual absolute value on R. This shows that | · | is (even Lipschitz) continuous,
whence (a).

We now prove (b). Let x0, x1 ∈ F and ε > 0. Pick any yi ∈ D<ε(xi), for i = 0, 1. We compute

|(y0 + y1)− (x0 + x1)| = |(y0 − x0) + (y1 − x1)| 6 |y0 − x0|+ |y1 − x1| < 2ε,

hence y0 + y1 ∈ D<2ε(x0 + x1), which shows that addition is continuous. We also have

|y0y1 − x0x1| = |(y0 − x0)(y1 − x1) + (y0 − x0)x1 + x0(y1 − x1)|
< ε ·

(
ε+ |x0|+ |x1|

)
.

Thus, y0y1 ∈ D<ε(ε+|x0|+|x1|)(x0x1), which shows that multiplication is continuous. Finally, let
x ∈ F× and 0 < ε < |x|

2 . For any y ∈ D<ε(x) we have |y| = |x+(y−x)| > |x|−|y−x| > |x|− |x|2 = |x|
2 .

Hence, we have

|y−1 − x−1| =
∣∣∣∣x− yxy

∣∣∣∣ =
|x− y|
|x| · |y|

<
2ε

|x|2
.

Thus y−1 ∈ D<2ε|x|−2(x−1), which shows that x 7→ x−1 is continuous.

So far, we have not used the ultrametric triangle inequality. We now study properties which are
specific to non-archimedean fields.

Lemma 1.4. For all x, y ∈ F one has:

|x| 6= |y| =⇒ |x+ y| = max{|x|, |y|}.

Proof. Without loss of generality, we may assume |x| < |y|. Then

|x| < |y| = |(x+ y)− x| 6 max{|x+ y|, |x|}

implies |y| 6 |x+ y|. Conversely, we have |x+ y| 6 max{|x|, |y|} = |y|.

Lemma 1.5. Let (F, | · |) be a non-archimedean field.

(a) The sets D<ε(x) and D6ε(x) := {y ∈ F | |y − x| 6 ε} are both open and closed in F .

(b) For x, y ∈ F and ε > 0 with D<ε(x) ∩D<ε(y) 6= ∅ we have D<ε(x) = D<ε(y).

(c) F is totally disconnected, that is, every non-empty connected subset of F is a point.
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Proof. For (a), it is clear that D<ε(x) is open and D6ε(x) is closed. We prove that D<ε(x) is closed;
the fact that D6ε(x) is open then follows from a similar argument. Take any y ∈ F rD<ε(x). For
each z ∈ D<ε(y), we have |z − y| < ε 6 |y − x| and hence Lemma 1.4 shows

|z − x| = |(z − y) + (y − x)| = max{|z − y|, |y − x|} = |y − x| > ε.

We conclude D<ε(y) ⊆ F rD<ε(x), which shows that D<ε(x) is closed.
We now prove (b). Fix any z ∈ D<ε(x) ∩D<ε(y). For each x′ ∈ D<ε(x) we compute

|x′ − y| = |(x′ − x) + (x− z) + (z − y)| 6 max{|x′ − x|, |x− z|, |z − y|} < ε.

This shows D<ε(x) ⊆ D<ε(y). The reverse inclusion follows symmetrically.
It remains to prove (c). Let M ⊆ F be any non-empty connected subset and let x ∈M . Since

M is connected, we have M ⊆ D<ε(x), because otherwise, M =
(
M ∩D<ε(x)

)
t
(
M rD<ε(x)

)
would be a decomposition into two non-empty open subsets by (a). Hence

M ⊆
⋂
ε>0

D<ε(x) = {x},

which shows M = {x}.

There is another property of the p-adic absolute value on Q that we have not considered, yet:
The set |Q×|p = pZ ⊆ R×>0 is discrete.

Definition 1.6. A non-archimedean absolute value | · | on F is called discrete if |F×| is a discrete
subset of R×>0. In this case, we call (F, | · |) a discretely valued non-archimedean field.

Lemma 1.7. The absolute value | · | on F is discrete if and only if there exists r ∈ R>1 such that
|F×| = rZ.

Proof. If |F×| = rZ for some r ∈ R>1, then | · | is clearly discrete. For the converse, it suffices to
show that every discrete subgroup H 6= {1} of R×>0 is of the form rZ for some r > 1. Let r ∈ H be
the smallest element with r > 1. Since logr : R×>0 → R is a topological isomorphism of groups, it
suffices to show that Z is the unique (non-trivial, discrete) subgroup of R which contains 1 but no
element s with 0 < s < 1. But this is clear.

Notation. Suppose that | · | is discrete and let r ∈ R>1 with |F×| = rZ. We denote

valF := − logr| · | : F× −→→ Z

the associated (normalized) discrete valuation. We put valF (0) :=∞. Observe that | · | = r− valF (·).
It satisfies the following properties, for x, y ∈ F :

(V1) valF (x) =∞ if and only if x = 0;

(V2) valF (xy) = valF (x) + valF (y);

(V3) valF (x+ y) > min{valF (x), valF (y)}.

Note that Lemma 1.4 says

valF (x) 6= valF (y) =⇒ valF (x+ y) = min{valF (x), valF (y)}. (1.1)
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Proposition 1.8. Let | · | be a (non-trivial) discrete non-archimedean absolute value on F with
associated discrete valuation valF : F →→ Z ∪ {∞}.

(a) oF := {x ∈ F | |x| 6 1} = {x ∈ F | valF (x) > 0} is a subring of F .

(b) mF := {x ∈ F | |x| < 1} = {x ∈ F | valF (x) > 1} is the unique maximal ideal of oF . In partic-
ular, (oF ,mF ) is a local ring, and o×F = {x ∈ F | |x| = 1} = {x ∈ F | valF (x) = 0}.

(c) oF is a principal ideal domain.

(d) Any $ ∈ oF with valF ($) = 1 generates mF and is a prime element.

Proof. It is clear from (NA2) (or (V2)) that oF and mF are closed under multiplication with oF . It
follows from the ultrametric triangle inequality (NA3) (or (1.1)) that mF and oF are closed under
addition. Hence, oF is a subring of F and mF is an ideal of oF . For any x ∈ oF r mF we have
valF (x−1) = − valF (x) = 0 and hence x−1 ∈ oF . This shows oF rmF ⊆ o×F . It follows from 1 /∈ mF
that mF is a proper ideal of oF and hence o×F ⊆ oF rmF . We deduce

oF rmF
def.
= {x ∈ F | valF (x) = 0} = o×F .

In particular, mF is the unique maximal ideal in oF . It is clear that oF is an integral domain. Let
a be a non-zero ideal in oF . There exists a ∈ a with

valF (a) = min
a′∈a

valF (a′) <∞.

It is clear that (a) ⊆ a. Conversely, let a′ ∈ a. Then valF (a
′

a ) = valF (a′)− valF (a) > 0 and hence
a′

a ∈ oF . Therefore, a
′ = a′

a · a ∈ (a), and this proves a = (a). Hence, oF is a principal ideal domain.
The argument also shows that any $ ∈ oF with valF ($) = 1 generates mF . It remains to show
that $ is a prime element. But this follows immediately from the fact that mF = ($) is a prime
ideal.

Definition 1.9. The ring oF of Proposition 1.8 is called the valuation ring of F . Any generator $
of mF is called a uniformizer . The field

κF := oF /mF

is called the residue field of F .

Example 1.10. The valuation ring of (Q, | · |p) is

Z(p) :=
{
x ∈ Q

∣∣∣x =
a

b
with a, b ∈ Z and p - b

}
with uniformizer p and maximal ideal pZ(p). The inclusion Z/pZ ↪→ Z(p)/pZ(p) is surjective: If
a
b ∈ Z(p) with p - b, there exist m,n ∈ Z with a = bm+ pn and hence a

b = m+ pnb ≡ m mod pZ(p).
We conclude that the residue field of Z(p) is Fp = Z/pZ.
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§2. Completion

The property of R that allows one to do analysis is its completeness. The Intermediate Value
Theorem applies to show that every real polynomial f(t) ∈ R[t] of odd degree has a root in R.
Moreover, if f(t) ∈ R[t] has a real root r, the Newton method can be used to construct a sequence
(rn)n in R with limn→∞ rn = r. In view of its applications to solving Diophantine equations (that
is, finding roots of polynomials with coefficients in Z), one would like to consider non-archimedean
fields which are complete.

Let (F, | · |) be a non-archimedean field. We recall the following notions:

Definition 2.1. A sequence (xn)n in F is called:

(a) convergent if there exists x ∈ F such that for all ε > 0 there exists n0 ∈ Z>0 such that
xn ∈ D<ε(x) for all n > n0.

(b) a Cauchy sequence if for all ε > 0 there exists n0 ∈ Z>0 such that |xm − xn| < ε for all
m,n > n0.

As usual, we have:

– If (xn)n converges to x ∈ F , then x is uniquely determined and is called the limit of the
sequence (xn)n; we write x =: limn→∞ xn.

– Every convergent sequence is a Cauchy sequence.

– Every Cauchy sequence is bounded.

As a consequence of the ultrametric triangle inequality, we have

– (xn)n is a Cauchy sequence if and only if |xn+1 − xn| → 0 for n→∞.

Definition 2.2. The field (F, | · |) is called complete if every Cauchy sequence converges.

Theorem 2.3. Let (F, | · |) be a non-archimedean field. Up to isometric isomorphism, there exists
a unique complete non-archimedean field (F̂ , ‖ · ‖) satisfying:

(i) F ⊆ F̂ and ‖ · ‖|F = | · |.

(ii) F is dense in F̂ .

We call F̂ the completion of F with respect to | · |.

Proof. We first prove uniqueness: Let (F̂i, ‖ · ‖i), for i = 1, 2, be two completions of (F, | · |) and
denote ιi : F ↪→ F̂i the corresponding embedding of fields. We define a map

ϕ : (F̂1, ‖ · ‖1) −→ (F̂2, ‖ · ‖2)

as follows: Since F ⊆ F̂1 is dense, we may choose for any x ∈ F̂1 a sequence (xn)n in F such that
ι1(xn)→ x for n→∞. If (x′n)n is another sequence in F with limn→∞ ι1(x′n) = x, then

‖ι2(x′n)− ι2(xn)‖2 = ‖ι2(x′n − xn)‖2 = |x′n − xn|

= ‖ι1(x′n − xn)‖1 = ‖ι1(x′n)− ι1(xn)‖1
n→∞−−−−→ 0.
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Hence, the definition ϕ(x) := limn→∞ ι2(xn) is independent of (xn)n. It is trivial to check that
ϕ : F̂1 → F̂2 is a homomorphism of fields and satisfies ‖ϕ(x)‖2 = ‖x‖1 for all x ∈ F̂1. By interchang-
ing the roles of F̂1 and F̂2, we obtain an isometry ψ : (F̂2, ‖ · ‖2)→ (F̂1, ‖ · ‖1) of fields. Unraveling
the definitions, it is clear that ϕ ◦ψ = idF̂2

and ψ ◦ϕ = idF̂1
. Hence, ϕ is an isometric isomorphism.

We now prove the existence statement. Let C be the set of all Cauchy sequences in F . The
componentwise operations

(xn)n + (yn)n := (xn + yn)n and (xn)n · (yn)n := (xnyn)n

define on C the structure of a commutative ring: The only claim that is not immediately clear is
that (xnyn)n is a Cauchy sequence if (xn)n and (yn)n are. As the sequences (xn)n and (yn)n are
bounded, we find C ∈ R>0 such that |xn|, |yn| 6 C for all n. Let now ε > 0 and choose n0 such
that |xm − xn|, |ym − yn| < ε

2C for all m,n > n0. Then

|xmym − xnyn| = |xm · (ym − yn) + (xm − xn)yn| 6 |xm| · |ym − yn|+ |xm − xn| · |yn|

< C · ε
2C

+
ε

2C
· C = ε

for all n,m > n0. Hence, (xnyn)n ∈ C. The map F → C, x 7→ (x, x, x, . . . ), is clearly a ring
homomorphism. Let N ⊆ C be the subset of all sequences which converge to zero. It is clearly
closed under addition. Since every Cauchy sequence is bounded, N is also closed under multiplication
with elements of C. In other words, N ⊆ C is an ideal. We claim that

F̂ := C/N

is a field. Let x ∈ F̂ r {0} which is represented by a Cauchy sequence (xn)n. Then only finitely
many of the xn’s are zero and hence, after replacing (xn)n by a different representative if necessary,
we may assume xn 6= 0 for all n. Note that there exists c > 0 such that |xn| > c for all n, because
otherwise we could construct a subsequence of (xn)n converging to zero, which implies x = 0. Now,
|x−1
n+1 − x−1

n | =
|xn−xn+1|
|xn|·|xn+1| 6 c−2|xn − xn+1| → 0 for n→∞, which shows that (x−1

n )n is a Cauchy

sequence. Hence, y = (x−1
n )n +N ∈ F̂ defines the inverse of x. Thus, F̂ is a field and the composite

ι : F ↪→ C →→ F̂ is a field embedding. For each x ∈ F̂ , we put

‖x‖ := lim
n→∞

|xn|, (1.2)

where (xn)n is any Cauchy sequence representing x. One checks that this definition does not depend
on the choice of (xn)n and that ‖ · ‖ is a non-archimedean absolute value on F̂ . It is clear from the
construction that ι : (F, | · |)→ (F̂ , ‖ · ‖) is an isometric embedding and that ι(F ) is dense in F̂ .

Remark. If (F, | · |) is discretely valued with completion (F̂ , ‖ · ‖), then (1.2) shows ‖F̂×‖ = |F×|.
In other words, ‖ · ‖ is also discrete.

Example 2.4. The completion of (Q, | · |p) is denoted Qp and called the field of p-adic numbers.
The extension of | · |p to Qp is again denoted | · |p. The valuation ring

Zp := {x ∈ Qp | |x|p 6 1}
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is called the ring of p-adic integers. Since |Q×p |p = |Q×|p = pZ, it follows from Proposition 1.8 that
Zp is a local principal ideal domain with uniformizer p and maximal ideal pZp. The residue field of
Qp is Fp. More generally, we have:

Lemma 2.5. Let (F, | · |) be a non-archimedean field with completion (F̂ , ‖ · ‖). Then oF is dense
in oF̂ and κF̂ ∼= κF .

Proof. The kernel of the composite oF → oF̂ →→ oF̂ /mF̂ = κF̂ is oF ∩ mF̂ = mF . This induces
an inclusion κF ↪→ κF̂ . Since F is dense in F̂ , we may choose for any x ∈ oF̂ some y ∈ F with
‖y− x‖ < 1. Hence y− x ∈ mF̂ . Then y = x+ (y− x) ∈ F ∩ oF̂ = oF , and y+mF is a preimage of
x+ mF̂ .

Exercise. If (F, | · |) in the above lemma is discretely valued, then oF /mnF ∼= oF̂ /m
n
F̂
, for all n ∈ Z>0.

§3. Local Fields

Definition 3.1. A local field is a complete, discretely valued non-archimedean field F with finite
residue field κF .

Lemma 3.2. Let F be a local field and $ ∈ oF a uniformizer. For every element x ∈ F there exists
a unique n ∈ Z and x0 ∈ o×F such that x = x0$

n. The integer n = valF (x) is independent of the
choice of $. In other words, one has F× = $Z · o×F ∼= Z× o×F .

Proof. For n := valF (x) we have valF (x$−n) = valF (x)−n valF ($) = 0 and hence x0 := x$−n ∈ o×F .
It is clear that x0 and n are unique with x = x0$

n.

Proposition 3.3. Let F be a local field with uniformizer $. Let R ⊆ oF be a subset with 0 ∈ R
and such that the composite map R ⊆ oF →→ κF is bijective. Any series

x =
∑
i>n0

ai$
i, (1.3)

where ai ∈ R and n0 ∈ Z is fixed, converges in F , and each x ∈ F can be written uniquely in this
form. Moreover, valF (x) = n0 if an0 6= 0.

Proof. The partial sums xn :=
∑n
i=n0

ai$
i satisfy

|xn+1 − xn| = |an+1| · |$|n+1 n→∞−−−−→ 0.

Thus, (xn)n is a Cauchy sequence in F and hence converges to a unique element in F by completeness.
Let now x ∈ F and let n0 = valF (x) ∈ Z. Replacing x with $−n0x, we may assume x ∈ oF . We

inductively construct a sequence (ai)i in R such that

x ≡
n∑
i=0

ai$
i mod mn+1

F , (1.4)

for all n > −1. Assume a0, . . . , an ∈ R are constructed such that (1.4) holds (for n = −1 this is
vacuous). Then z := $−n−1 · (x −

∑n
i=0 ai$

i) ∈ oF , and we find a unique an+1 ∈ R such that
z ≡ an+1 mod mF . It follows that x ≡

∑n+1
i=0 ai$

i mod mn+2
F . We have thus constructed (ai)i in

R such that x−
∑
i>0 ai$

i ∈ mnF for all n > 0. Since
⋂
n>0 m

n
F = {0}, we deduce x =

∑
i>0 ai$

i.
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Example 3.4. Every element x ∈ Q×p admits a unique p-adic expansion

x =
∑
i>n0

aip
i,

where ai ∈ {0, 1, . . . , p− 1} and n0 ∈ Z with an0 6= 0. Moreover, x ∈ Zp if and only if n0 > 0, and
x ∈ Z×p if and only if n0 = 0 (and a0 6= 0).

Corollary 3.5. Let F be a local field. Then oF is compact. In particular, F is locally compact.

Proof. Let R ⊆ oF be as in Proposition 3.3. Assume for a contradiction that oF is not compact, and
let oF =

⋃
λ∈Λ Uλ be an open covering which has no finite subcovering. We construct a sequence

(an)n in R such that
∑n
i=0 ai$

i + $n+1oF is not covered by finitely many Uλ’s, for all n > 0.
Assume we have already constructed a0, . . . , an. Then

n∑
i=0

ai$
i +$n+1oF =

n∑
i=0

ai$
i +$n+1

(⋃
a∈R

a+$oF

)
=
⋃
a∈R

( n∑
i=0

ai$
i + a$n+1

)
+$n+2oF

is an open covering. As R is finite, there exists an+1 ∈ R such that
∑n+1
i=0 ai$

i +$n+2oF cannot
be covered by finitely many Uλ’s. This finishes the construction of (an)n with the desired property.

The sequence (
∑n
i=0 ai$

i)n converges by Proposition 3.3 to an element x :=
∑∞
i=0 ai$

i ∈ oF .
Choose λ0 ∈ Λ such that x ∈ Uλ0

. But then we find n� 0 such that
∑n−1
i=0 ai$

i +mnF = x+mnF ⊆
Uλ0

, a contradiction to the fact that
∑n−1
i=0 ai$

i +mnF cannot be covered by finitely many Uλ’s.

Exercise (Teichmüller representatives). Let F be a local field with residue field κF = oF /mF of
characteristic p > 0. Fix a uniformizer $.

(a) Let a, b ∈ oF and m ∈ Z>1 such that a ≡ b mod mmF . Show ap
n ≡ bp

n

mod mn+m
F for all

n ∈ Z>0.

(b) Recall that the residue field κF is perfect , which means that the map x 7→ xp is bijective. Let
z ∈ κF and choose xn ∈ oF such that (xn + mF ) = zp

−n
for all n ∈ Z>0.

(i) Show that (xp
n

n )n is a Cauchy sequence in oF and hence converges to a unique element
[z] ∈ oF .

(ii) Show that [z] = limn→∞ xp
n

n is independent of the choice of the sequence (xn)n.
(iii) Show that the map [ · ] : κF → oF satisfies [zw] = [z] · [w] and [1] = 1.

(c) Conclude that oF contains all (#κF − 1)-th roots of unity. (For example, Zp contains all
(p− 1)-th roots of unity.)

§4. Locally Profinite Groups

We have seen that each local field F is Hausdorff, totally disconnected (Lemma 1.5), and locally
compact (Corollary 3.5). We now study topological groups with these properties.
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Definition 4.1. A locally profinite group is a topological group1 which is Hausdorff, totally discon-
nected, and locally compact2. A compact locally profinite group is called profinite.

Example 4.2. (a) Discrete groups are locally profinite. Finite discrete groups are profinite.

(b) If G is (locally) profinite, then every closed subgroup is (locally) profinite, and every quotient
of G by a closed normal subgroup is (locally) profinite.

(c) Arbitrary products of profinite groups are profinite. Finite products of locally profinite groups
are locally profinite.

Exercise 4.3. Let G be a topological group and H ⊆ G a closed subgroup.

(a) Assume G is compact. Show that H is open if and only if the index [G : H] is finite.

(b) Show that H is open if and only if H contains a non-empty open subset of G.

(c) Show that every open subgroup of G is closed.

(d) Show that H is open in G if and only if the quotient topology on G/H is discrete.

Example 4.4. Let F be a local field and n ∈ Z>1.

(a) Fn and (F×)n (endowed with the product topologies) are locally profinite groups with respect
to addition and multiplication, respectively. The groups oF , mnF , o

×
F , and (1 + mnF )× are

profinite.

(b) If R is a commutative unital ring, we denote by Matn,n(R) ∼= Rn
2

the ring of n× n-matrices
and by GLn(R) ⊆ Matn,n(R) the subset of invertible matrices.

For each A ∈ Matn,n(F ), the determinant det(A) ∈ F is a polynomial in the entries of A. By
Lemma 1.3(b), the map det : Matn,n(F )→ F is continuous. Hence,

GLn(F ) = det−1(F×)

is open in Matn,n(F ). It follows that GLn(F ) is locally profinite.

The additive subgroup Matn,n(oF ) = on
2

F of Matn,n(F ) is profinite.

Note that GLn(oF ) = det−1(o×F )∩Matn,n(oF ) is closed in Matn,n(oF ) hence compact, because
o×F ⊆ oF is closed by Lemma 1.5(a) and det is continuous. Thus, the open subgroup GLn(oF ) ⊆
GLn(F ) is profinite. For each r ∈ Z>1, the r-th congruence subgroup

Kr := Ker
(
GLn(oF ) −→ GLn(oF /m

r
F )
)

= 1 +$r Matn,n(oF ),

is an open normal subgroup of GLn(oF ), hence profinite. (For the equality, use that for each
A ∈ Matn,n(oF ) we have det(1 +$rA) ≡ 1 mod mrF , so that det(1 +$rA) ∈ o×F and hence
1 +$r Matn,n(oF ) ⊆ GLn(oF ).) The groups Kr, r ∈ Z>1, form a fundamental system of open
neighborhoods of 1.

1Recall that a topological group is a group G carrying a topology such that the map G×G→ G, (g, h) 7→ gh−1

is continuous.
2A topological space X is called locally compact if for every x ∈ X and every open neighborhood U of x there

exists an open neighborhood V of x whose closure V is compact and contained in U .
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Remark (Vedenissov’s Theorem). If X is a totally disconnected, locally compact, Hausdorff topolog-
ical space, then every point x ∈ X admits a fundamental system of neighborhoods which are clopen
(i.e., open and closed).

Proof. Let x ∈ X and let U 3 x be an open neighborhood such that U is compact.
Step 1: Let F ⊆ U be a closed subset such that for every y ∈ F there exists a clopen subset

C ⊆ U with y ∈ C and x /∈ C. We claim there exists a clopen subset C ⊆ U with F ⊆ C and
x /∈ C. Indeed, for each y ∈ F let Cy ⊆ U be a clopen subset with y ∈ Cy and x /∈ Cy. Note
that F is compact as a closed subset of the compact set U . Hence, there exist y1, . . . , yr ∈ F with
F ⊆

⋃r
i=1 Cyi =: C, and x /∈ C.

Step 2: Let M =
⋂
C C, where C runs through the clopen subsets of U containing x. We first

claim M = {x}; as X is totally disconnected, it suffices to prove that M is connected. Note that
M is closed in U and x ∈M . Consider closed (hence compact) subsets E,F ⊆ U with M = E ∪ F
and E ∩ F = ∅. Exchanging E and F if necessary, we may assume x ∈ E. We will show F = ∅.
As X is Hausdorff, we find (by a standard argument) an open subset W ⊆ X such that E ⊆ W
and W ∩ F = ∅. By construction, we have ∂W ∩M = ∅, where ∂W := W rW is the boundary of
W . By the definition of M , this means that every point of ∂W ∩ U can be separated from x by a
clopen subset of U . Step 1 provides a clopen subset C ⊆ U such that ∂W ∩ U ⊆ C and x /∈ C. By
construction, we have W ∩ U r C = W ∩ U r C, which is clopen in U , contains x, and is disjoint
from F . From M ⊆W ∩ U r C we deduce M ∩ F = ∅, hence F = ∅. Therefore, M is connected,
which proves M = {x}.

Note that M = {x} is disjoint from ∂U := U r U . Step 1 applied to ∂U yields a clopen subset
C ⊆ U with x ∈ C and C ∩ ∂U = ∅. We finish by observing that C is clopen in X.

Proposition 4.5. For a topological group G, the following are equivalent:

(i) G is profinite, i.e., compact, Hausdorff, and totally disconnected.

(ii) G is compact, Hausdorff, and the neutral element 1 ∈ G admits a fundamental system of open
neighborhoods consisting of open normal subgroups.

(iii) For each open normal subgroup N ⊆ G the quotient group G/N is finite, and the canonical
map

G −→ lim←−
N⊆G

G/N

is a topological group isomorphism, where N runs through a fundamental system of open
neighborhoods of 1 consisting of normal subgroups of G.

Proof. “(i) =⇒ (ii)”: Let U ⊆ G be an open and closed neighborhood of 1. We have to construct
an open normal subgroup N ⊆ G such that N ⊆ U . Put V := {g ∈ U |Ug ⊆ U}. We first show
that V is open. Fix v ∈ V so that Uv ⊆ U . As multiplication is continuous, there exist for each
u ∈ U open neighborhoods Uu of u and Vu of v such that UuVu ⊆ U . Then U =

⋃
u Uu is an

open covering. As U is compact as a closed subset of a compact set, we find u1, . . . , ur in U with
U =

⋃r
i=1 Uui . Then W :=

⋂r
i=1 Vui is an open neighborhood of v and is contained in V , because it

satisfies U ·W =
⋃r
i=1 Uui ·W ⊆ U . Hence, V is open. Now put H := V ∩ V −1, which is also open.

We have 1 ∈ H. For all g, h ∈ H we compute Ugh−1 ⊆ Uh−1 ⊆ U ; this shows gh−1 ∈ H. Hence,
H is an open subgroup of G which is contained in U . We find g1, . . . , gn ∈ G with G =

⋃n
i=1 giH.

Then N :=
⋂n
i=1 giHg

−1
i is an open normal subgroup of G which is contained in U .
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“(ii) =⇒ (iii)”: Let N be a fundamental system of open neighborhoods of 1 consisting of normal
subgroups of G viewed as a partially ordered set with respect to inclusion. We endow

∏
N∈N G/N

with the product topology, where each G/N is discrete and finite. The topological group
∏
N G/N

is Hausdorff and compact (by Tychonoff’s Theorem), and

lim←−
N∈N

G/N :=

{
(gN )N ∈

∏
N∈N

G/N

∣∣∣∣∣ϕN,N ′(gN ′) = gN for all N ′ ⊆ N in N

}

is a subgroup, where ϕN,N ′ : G/N ′ →→ G/N denotes the canonical projection for any N ′ ⊆ N
in N . If (gN )N /∈ lim←−N G/N , there exist N1 ⊆ N2 in N with ϕN2,N1

(gN1
) 6= gN2

. The open
subset {gN1

} × {gN2
} ×

∏
N 6=N1,N2

G/N does not intersect lim←−N G/N . Hence, lim←−N G/N is closed
in
∏
N G/N . The canonical map

ϕ : G −→ lim←−
N∈N

G/N,

g 7−→ (gN)N

is well-defined and continuous. Since Ker(ϕ) =
⋂
N∈N N = {1}, the map ϕ is injective. To prove

surjectivity, let (gNN)N ∈ lim←−N G/N be arbitrary. We have to show⋂
N∈N

gNN 6= ∅, (1.5)

because then any g ∈
⋂
N gNN satisfies ϕ(g) = (gNN)N . For all N1, . . . , Nr ∈ N , there exists

N ′ ∈ N with N ′ ⊆
⋂r
i=1Ni, by assumption (ii). Then gN ′Ni = gNiNi, for all 1 6 i 6 r, and

therefore gN ′ ∈
⋂r
i=1 gNiNi is non-empty. As each coset gNN is closed in G (the complement is

open) and G is compact, we deduce (1.5). Since ϕ is continuous and bijective, G is compact, and
lim←−N G/N is Hausdorff, it follows that ϕ is a homeomorphism.

“(iii) =⇒ (i)”: Since each G/N is compact, Hausdorff, and totally disconnected, also the product∏
N∈N G/N is compact (by Tychonoff’s Theorem), Hausdorff, and totally disconnected. These

properties are inherited by the closed subset lim←−N G/N .

Example 4.6. Let F be a local field and $ ∈ oF a uniformizer.

(a) The group (oF ,+) is profinite, and {mnF }n>0 is a fundamental system of open neighborhoods
of 0. Proposition 4.5 shows that the ring homomorphism

oF
∼=−→ lim←−

n>0

oF /m
n
F ,

x 7−→
(
x+ mnF

)
n

is a homeomorphism. By virtue of Proposition 3.3, the map is given by
∑∞
i=0 ai$

i 7→(∑n−1
i=0 ai$

i + mnF
)
n
, which gives another proof of bijectivity.

As a special case, we find Zp ∼= lim←−n>0
Z/pnZ, which gives another definition of Zp.
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(b) Note that the map o×F → (oF /m
n
F )× is surjective with kernel U (n)

F := 1 + mnF . Hence, from (a)
we obtain topological group isomorphisms

o×F
∼=
(
lim←−
n

oF /m
n
F

)×
= lim←−

n

(oF /m
n
F )× ∼= lim←−

n

o×F /U
(n)
F .

Exercise 4.7. Let G be a topological group. The following are equivalent:

(i) G is locally profinite.
(ii) G is Hausdorff and every open neighborhood of 1 ∈ G contains a compact open subgroup.
(iii) G contains an open subgroup which is profinite.

Exercise 4.8. Let G be a locally profinite group and H ⊆ G a compact subgroup. Show that there
exists a compact open subgroup K ⊆ G containing H. (Hint: Let K ′ ⊆ G be any compact open
subgroup. Show that K ′′ :=

⋂
h∈H hK

′h−1 is still open and that K := K ′′H is a compact open
subgroup of G containing H.)

Example 4.9. Let L/F be an algebraic field extension. Then L/F is called Galois if every
irreducible polynomial in F [x] which has a root in L splits into pairwise distinct linear factors in
L[x].

We write F(L/F ) for the set of intermediate fields of L/F which are finite Galois over F . Then

L/F is Galois ⇐⇒ L =
⋃

E∈F(L/F )

E.

Let L/F be Galois. We denote Gal(L/F ) := AutF (L) the Galois group of L/F . The canonical
map

Gal(L/F )
∼=−→ lim←−

E∈F(L/F )

Gal(E/F ),

σ 7−→
(
σ|E
)
E

is an isomorphism of groups: The map is injective, because each a ∈ L is contained in a finite Galois
extension E/F . Given (σE)E ∈ lim←−E Gal(E/F ), the σE ’s glue to a unique map σ : L → L. It is
clear that σ fixes F pointwise and is invertible, hence is an element of Gal(L/F ).

We conclude from Proposition 4.5 that Gal(L/F ) is a profinite group. The groups Gal(L/E),
where E/F runs through the finite Galois extensions contained in L, are a fundamental system of
open normal subgroups.

Exercise (Fundamental Theorem of Galois Theory). Let L/F be a Galois extension.

(a) L/E is Galois, for every intermediate field E of L/F .
(b) The maps

{closed subgroups of Gal(L/F )} {intermediate fields of L/F},

H LH := {a ∈ L |σ(a) = a for all σ ∈ H} ,

Gal(L/E) E

are bijective and inverse to each other.
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(c) A subgroup H ⊆ Gal(L/F ) is open if and only if LH/F is finite.

(d) If E is an intermediate field of L/F , then E/F is Galois if and only if Gal(L/E) is a (closed)
normal subgroup in Gal(L/F ). In this case,

Gal(L/F )/Gal(L/E)
∼=−→ Gal(E/F ),

σGal(L/E) 7−→ σ|E

is an isomorphism of topological groups.



Chapter 2

Smooth Representations of Locally Profinite
Groups

§5. First Definitions and Examples

Let G be a locally profinite group. Denote C the field of complex numbers.

Definition 5.1. (a) A G-representation is a pair (V, π) consisting of a C-vector space V together
with a group homomorphism

π : G −→ AutC(V ).

We sometimes write V or π instead of (V, π) and gv := π(g)v, for g ∈ G, v ∈ V .

Equivalently, a G-representation is C-vector space V together with a map Φ: G × V → V ,
(g, v) 7→ g · v such that 1 · v = v, (gh) · v = g · (h · v) and Φ(g,_) : V → V is C-linear for all
v ∈ V , g, h ∈ G.
Given G-representations (V, π) and (W,ρ), a C-linear map f : V →W is called G-equivariant
if f(gv) = gf(v), for all v ∈ V , g ∈ G. We denote HomG(V,W ) the C-vector space of all
G-equivariant C-linear maps.

(b) A G-representation (V, π) is called smooth if for all v ∈ V the stabilizer

StabG(v) := {g ∈ G | gv = v}

is an open subgroup of G.

We denote
Rep(G)

the category of smooth G-representations together with G-equivariant maps.

Lemma 5.2. Let (V, π) be a G-representation. The following conditions are equivalent:

(i) (V, π) is smooth.

(ii) V =
⋃
K⊆G V

K , where V K := {v ∈ V | gv = v for all g ∈ K} and K runs through all compact
open subgroups of G.

17
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(iii) The action map G × V → V , (g, v) 7→ π(g)v is continuous, when V is endowed with the
discrete topology and G× V with the product topology.

Proof. “(i) =⇒ (iii)”: Let (g, v) ∈ G× V . Then g StabG(v)× {v} is an open neighborhood of (g, v)
such that π(g StabG(v))({v}) = {gv}. Hence, the action map is continuous.

“(iii) =⇒ (ii)”: Let v ∈ V and denote the action map by Φ. As Φ−1({v}) ⊆ G× V is open, there
exists (by Exercise 4.7) an open compact subgroup K of G such that Φ(K × {v}) ⊆ {v}. In other
words, v ∈ V K .

“(ii) =⇒ (i)”: Let v ∈ V . By assumption, there exists a compact open subgroup K of G with
K ⊆ StabG(v), and StabG(v) =

⋃
g∈StabG(v) gK is open.

Example 5.3. (a) A group homomorphism χ : G → C× is called a character . Then (C, χ) is
smooth if and only if Ker(χ) is open. The trivial representation is the G-representation (C,1),
where 1(g) = 1 for all g ∈ G.

(b) Let G = GL1(F ) = F× for a local field F with uniformizer $. Since F× = $Z × o×F
(Lemma 3.2), giving a smooth character χ : F× → C× is the same as giving:

– a complex number χ($) ∈ C×;
– a character o×F /(1 + mrF )× → C×.

(c) Let C∞c (G) be the C-vector space of all functions f : G→ C which are locally constant and
have compact support

Supp(f) := {g ∈ G | f(g) 6= 0},
where the overline means topological closure. The C-vector space structure is given pointwise,
that is, (f1 + f2)(g) := f1(g) + f2(g) and (af)(g) := a · f(g), for all f, f1, f2 ∈ C∞c (G), a ∈ C,
and g ∈ G. The group G acts on C∞c (G) by right translation:(

ρ(g)f
)
(g′) := f(g′g), for all f ∈ C∞c (G), g, g′ ∈ G.

We claim that (C∞c (G), ρ) is a smooth G-representation. For each compact open subgroup K,
we put

C∞c (G/K) := C∞c (G)K ;

these are precisely the functions f ∈ C∞c (G) which satisfy f(gk) = f(g) for all g ∈ G, k ∈ K.
Let f ∈ C∞c (G). For each g ∈ Supp(f) there exists a compact open subgroup Kg ⊆ G such
that f is constant on gKg; in particular gKg ⊆ Supp(f). As Supp(f) is compact, we find
g1, . . . , gr ∈ Supp(f) with Supp(f) =

⋃r
i=1 giKgi .1 ForK :=

⋂r
i=1Kgi we have f ∈ C∞c (G/K).

In other words,
C∞c (G) =

⋃
K

C∞c (G/K), (2.1)

where K ⊆ G runs through the compact open subgroups.
Analogously, G acts on C∞c (G) by left translation,(

λ(g)f
)
(g′) := f(g−1g′), for all g, g′ ∈ G,

and a similar argument as above shows that (C∞c (G), λ) is smooth. Note that each C∞c (G/K)
is a (smooth) subrepresentation of (C∞c (G), λ).

1This argument shows that Supp(f) is open (and closed).
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(d) If (V, π) is a smooth G-representation and W ⊆ V is a G-invariant subspace, then W and
V/W are smooth G-representations.

(e) If {(Vi, πi)}i∈I is a family in Rep(G), then the direct sum
⊕

i∈I Vi is a smooth G-representation.

(f) If (V, π) and (W,σ) are smooth G-representations, then (π ⊗ σ)(g)(v ⊗ w) := π(g)v ⊗ σ(g)w
defines on V ⊗C W the structure of a smooth G-representation.

(g) Let H ⊆ G be a closed subgroup. If (V, π) is a smooth representation of G, then (V, π|H) is a
smooth representation of H called the restriction of (V, π).

Exercise 5.4. (a) Let (V, π) be a (not necessarily smooth) G-representation and put

V∞ :=
⋃
K⊆G

V K ,

where K runs through the compact open subgroups of G. Show that (V∞, π) is the largest
smooth subrepresentation of V (in particular G-invariant and a C-subvector space).

(b) Let f : (V, π)→ (W,σ) be a G-equivariant homomorphism between G-representations. Show
that f(V∞) ⊆W∞. Deduce that the assignment V 7→ V∞ is functorial.

Exercise 5.5. Find a locally profinite group G and a family {(Vi, πi)}i∈I in Rep(G) such that the
cartesian product

∏
i∈I Vi is not smooth.

(Hint: Consider the Zp-representation
∏
n∈Z>1

C∞c (Zp/pnZp).)

Definition 5.6. A G-representation (V, π) is called irreducible if V has precisely two subrepresen-
tations, namely {0} and V .2 We denote Irr(G) the set of isomorphism classes of irreducible smooth
G-representations.

Lemma 5.7. Assume G is profinite. If (V, π) is a smooth irreducible G-representation, then V is
finite dimensional.

Proof. Fix v ∈ V , v 6= 0. There exists an open normal subgroup K ⊆ G with v ∈ V K . Then [G : K]
is finite and hence the subspace W :=

∑
gK∈G/K Cπ(g)v ⊆ V is (well-defined and) G-invariant. As

V is irreducible, we conclude that V = W , which has dimension 6 [G : K].

Remark. The proof of the lemma shows that the irreducible smooth representations of a profinite
group G are given by the irreducible representations of G/K, where K runs through the open
normal subgroups of G. In this way, the representation theory of finite groups enters the smooth
representation theory of profinite groups.

Lemma 5.8. Let K ⊆ G be a compact subgroup. The functor Rep(G) → VectC, V 7→ V K is
exact: Let V ′ φ−→ V

ψ−→ V ′′ be an exact sequence of G-equivariant homomorphisms, which means
that Im(ϕ) = Ker(ψ). Then the induced sequence

(V ′)K
φK−−→ V K

ψK−−→ (V ′′)K

is exact.

2This also means that {0} is not irreducible.
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Proof. Since ψ ◦ φ = 0, it is clear that Im(φK) ⊆ Ker(ψK). Conversely, let v ∈ V K with ψ(v) = 0.
Since Im(ϕ) = Ker(ψ), there exists v′ ∈ V ′ with ϕ(v′) = v. As V ′ is smooth, we find an open
subgroup H ′ ⊆ G with v′ ∈ (V ′)H

′
. Put H := K ∩ H ′ so that also v′ ∈ (V ′)H . Then v′0 :=

1
[K:H]

∑
k∈K/H kv

′ lies in (V ′)K , and

φK(v′0) =
1

[K : H]

∑
k∈K/H

φ(kv′) =
1

[K : H]

∑
k∈K/H

kφ(v′) =
1

[K : H]

∑
k∈K/H

v = v,

where “k ∈ K/H” means that k runs through a set of representatives of K/H, and that the sum is
finite and independent of this choice. Hence, Im(ϕK) = Ker(ψK).

Exercise 5.9. Show that a sequence V ′ → V → V ′′ in Rep(G) is exact if and only if the induced
sequence (V ′)K → V K → (V ′′)K is exact for all compact open subgroups K of G.

§6. Haar Measures

Let G be a locally profinite group.

Exercise 6.1. The group algebra C[G] is defined as the C-vector space on the basis {eg}g∈G and
with multiplication given by bilinear extension of the multiplication on G:(∑

g∈G
ageg

)
·
(∑
g∈G

bgeg

)
:=

∑
g,h∈G

agbh · egh =
∑
g∈G

(∑
h∈G

ahbh−1g

)
· eg.

(a) Show that C[G] is a unital, associative C-algebra satisfying G ⊆ C[G]×.

(b) Let V be a C-vector space. Show that giving a group homomorphism G → AutC(V ) is
equivalent to giving a unital C-algebra homomorphism C[G] → EndC(V ), where EndC(V )
denotes the C-algebra of C-linear endomorphisms on V with respect to composition.

In other words, a G-representation is the same as a C[G]-module.

In view of the exercise, we ask whether we can identify smooth G-representations with modules
over some C-algebra. This is indeed the case, but the answer turns out to be much more involved
than for abstract representations. This section serves as a preparation.

Definition 6.2. Recall the smooth G-representation
(
C∞c (G), λ

)
from Example 5.3. A left Haar

measure is a non-zero C-linear map µG : C∞c (G)→ C satisfying the following properties:

(i) µG
(
λ(g)f

)
= µG(f) for all g ∈ G, f ∈ C∞c (G);

(ii) µG(f) > 0 for all f ∈ C∞c (G) with Im(f) ⊆ R>0.

A right Haar measure is defined analogously.

Notation. For each compact open subset X ⊆ G we denote 1X ∈ C∞c (G) the characteristic
function of X.
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Lemma 6.3. The G-representation (C∞c (G), λ) is generated by the 1K , where K ⊆ G runs through
the compact open subgroups. Explicitly, for each f ∈ C∞c (G/K) one has

f =
∑

g∈G/K

f(g) · λ(g)1K ,

where “g ∈ G/K” means that g runs through a set of representatives of G/K, and that the sum is
finite and independent of this choice.

Proof. Obvious.

Proposition 6.4. Up to multiplication by a constant c > 0, there exists a unique left (resp. right)
Haar measure µG : C∞c (G)→ C.

Proof. Let µG : C∞c (G)→ C be a left Haar measure. Fix a compact open subgroup K ⊆ G so that
µG(1K) ∈ R>0. We claim that µG(1K) uniquely determines µG. If H ⊆ K is any open subgroup,
then 1K =

∑
k∈K/H 1kH =

∑
k∈K/H λ(k)1H . We compute

µG(1K) =
∑

k∈K/H

µG
(
λ(k)1H

)
=

∑
k∈K/H

µG(1H) = [K : H] · µG(1H). (2.2)

Now, let f ∈ C∞c (G) be arbitrary. There exists a compact open subgroup H ⊆ K with f ∈
C∞c (G/H). Write f =

∑
g∈G/H f(g) · λ(g)1H as in Lemma 6.3; we deduce from (2.2) that

µG(f) =
∑

g∈G/H

f(g) · µG(1H) =
1

[K : H]

∑
g∈G/H

f(g) · µG(1K). (2.3)

This shows that µG is unique up to multiplication by a positive scalar.
For the existence, we fix a compact open subgroup K ⊆ G and choose µG(1K) ∈ R>0. If

f ∈ C∞c (G) is any element, we write f =
∑
g∈G/H f(g)1gH for some compact open subgroup H ⊆ G

with f ∈ C∞c (G/H) and define µG(f) as in (2.3). It remains to see that µG(f) is independent
of the choice of H. Let U ⊆ K be another subgroup with f ∈ C∞c (G/U). By replacing U with
U ∩H if necessary, we may assume U ⊆ H. Write 1H =

∑
h∈H/U 1hU . Check that, if g and h run

through a system of representatives for G/H and H/U , respectively, then gh runs through a system
of representatives for G/U . Then f =

∑
g∈G/H

∑
h∈H/U f(gh)1ghU and

1

[K : U ]

∑
g∈G/H

∑
h∈H/U

f(gh)µG(1K) =
1

[K : H] · [H : U ]

∑
g∈G/H

∑
h∈H/U

f(g)µG(1K)

=
1

[K : H]

∑
g∈G/H

f(g)µG(1K).

Hence, µG(f) is well-defined. The properties (i) and (ii) for µG are obvious from (2.3).

Notation. Let µG be a left Haar measure. For each f ∈ C∞c (G) we write∫
G

f(x) dµG(x) := µG(f).
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The invariance under left translation then reads
∫
G
f(gx) dµG(x) =

∫
G
f(x) dµG(x) or, more infor-

mally, dµG(x) = dµG(gx) for all g ∈ G.
If X ⊆ G is a compact open subset, we call

vol(X) := vol(X;µG) := µG(1X)

the volume of X with respect to µG.

Exercise 6.5. Let µG be a left Haar measure.

(a) For any two compact open subgroups H,K ⊆ G we have

vol(K)

vol(H)
= [K : H] :=

[K : K ∩H]

[H : K ∩H]
,

called the generalized index of H in K.

(b) Let g ∈ G. Show that the function νG : C∞c (G) → C, f 7→ µG
(
ρ(g)f

)
defines a left Haar

measure. Hence, there exists a unique δG(g) ∈ R>0 with νG = δG(g)µG. In integral notation:∫
G

f(xg) dµG(x) = δG(g)

∫
G

f(x) dµG(x).

More informally, we have dµG(x) = δG(g)µG(xg) for all g ∈ G.
(c) Show δG(gh) = δG(g)δG(h) for all g, h ∈ G. Hence, δG : G → R×>0 is a character, called the

modulus character .

(d) Let K ⊆ G be any compact open subgroup. Show that δG(g) = [gKg−1 : K] ∈ Q×>0 for all
g ∈ G. In particular, δG is trivial on every compact subgroup and hence defines a smooth
character δG : G→ C× which is independent of µG. (See also Exercise 4.8.)

(e) Show that νG(f) := µG(δG · f) defines a right Haar measure νG on G. (Here, we define
(δG · f)(g) = δG(g) · f(g) for all f ∈ C∞c (G) and g ∈ G.)

(f) Let H be another locally profinite group. Show that δG×H
(
(g, h)

)
= δG(g) · δH(h) for all

(g, h) ∈ G×H.

Exercise. Let H ⊆ G be a closed subgroup and let θ : H → C× be a smooth character. Let
C∞c (H\G, θ) be the space of locally constant functions f : G→ C with compact support in the coset
space H\G which satisfy f(hg) = θ(h)f(g) for all h ∈ H, g ∈ G. Note that C∞c (H\G, θ) becomes
a smooth G-representation if we let G act via right translation.

We fix a left Haar measure µH on H and a right Haar measure νG on G.

(a) Show that the map

Θ:
(
C∞c (G), ρ

)
−→

(
C∞c (H\G, θ), ρ

)
,

f 7−→
[
g 7→

∫
H

δH(h)θ(h−1)f(hg) dµH(h)
]

is a surjective G-equivariant homomorphism. (Hint: For surjectivity, it suffices to prove that
the induced map C∞c (G)K → C∞c (H\G, θ)K is surjective for all compact open subgroups
K ⊆ G.)
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(b) Show that Θ(λ(h)f) = δH(h)θ(h−1) ·Θ(f), for all h ∈ H and f ∈ C∞c (H\G, θ).

(c) Show that the following are equivalent:

(i) νG : C∞c (G) → C factors through a C-linear map νH\G : C∞c (H\G, θ) → C satisfying
νH\G(ρ(g)f) = νH\G(f) for all g ∈ G, f ∈ C∞c (H\G, θ);

(ii) θ = δH · (δ−1
G )|H .

If these conditions are satisfied, νH\G : C∞c (H\G, θ) → C is called a semi-invariant Haar
measure on H\G; it is unique up to multiplication by a non-zero scalar. One writes

νH\G(f) =:

∫
H\G

f(g) dνH\G(g), for all f ∈ C∞c (H\G, θ).

Fubini’s Theorem 6.6. Let G,H be locally profinite groups, and let µG, µH be left Haar measures
on G,H, respectively. There exists a unique left Haar measure µG ⊗ µH : C∞c (G ×H) → C such
that

(µG ⊗ µH)(f ⊗ f ′) = µG(f) · µH(f ′), (2.4)

for all f ∈ C∞c (G) and f ′ ∈ C∞c (H), where (f ⊗ f ′)(g, h) := f(g) · f ′(h). For all Φ ∈ C∞c (G×H)
we have ∫

H

∫
G

Φ(x, y) dµG(x) dµH(y) =

∫
G×H

Φ(x, y) d(µG ⊗ µH)(x, y) (2.5)

=

∫
G

∫
H

Φ(x, y) dµH(y) dµG(x).

Proof. Let Φ ∈ C∞c (G×H). There exist compact open subgroups K ⊆ G and U ⊆ H such that Φ
factors through a function G/K ×H/U → C with finite support. Hence, we have

Φ =
∑

g∈G/K

∑
h∈H/U

Φ(g, h) · 1gK ⊗ 1hU .

We deduce that the map C∞c (G)⊗CC
∞
c (H)

∼=−→ C∞c (G×H) given by f⊗f ′ 7→ [(g, h) 7→ f(g) ·f ′(h)]
is an isomorphism of G×H-representations. Hence, the composite

C∞c (G×H)
∼=←− C∞c (G)⊗C C

∞
c (H)

µG⊗µH−−−−−→ C⊗C C ∼= C

defines the unique left Haar measure on G×H satisfying (2.4). Property (2.5) can then be checked
for Φ = f ⊗ f ′ with f ∈ C∞c (G) and f ′ ∈ C∞c (H) in which case it is a restatement of

µH
(
µG(f) · f ′

)
= µG(f) · µH(f ′) = µG

(
µH(f ′) · f

)
.

§7. The Hecke Algebra

Let G be a locally profinite group and fix a left Haar measure µG : C∞c (G)→ C.
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Definition 7.1. We define on the C-vector space H(G) := C∞c (G) a convolution product as follows:
Let f, f ′ ∈ H(G). The map G×G→ C, (x, g) 7→ f(x)f ′(x−1g) defines an element of C∞c (G×G);
for all g ∈ G set

(f ∗µG f ′)(g) :=

∫
G

f(x)f ′(x−1g) dµG(x)

=

∫
G

f(gy)f ′(y−1) dµG(y) (substitute x = gy).

Then f ∗ f ′ := f ∗µG f ′ lies in H(G).
We call H(G) the Hecke algebra of G.

Exercise. (a) Use Fubini’s Theorem to check that (H(G), ∗) is an (in general non-unital) associa-
tive C-algebra.

(b) Let νG be another left Haar measure. Show that the C-algebras
(
H(G), ∗νG

)
and

(
H(G), ∗µG

)
are isomorphic.

Example 7.2. If G is discrete, then H(G) ∼= C[G] as C-algebras. In fact, H(G) has a unit if and
only if G is discrete.

Lemma 7.3. For every g ∈ G and f, f ′ ∈ H(G) one has:

(a) ρ(g)(f ∗ f ′) = f ∗
(
ρ(g)f ′

)
;

(b) λ(g)(f ∗ f ′) =
(
λ(g)f

)
∗ f ′;

(c)
(
ρ(g)f

)
∗ f ′ = δG(g) · f ∗

(
λ(g−1)f ′

)
, where δG is the modulus character from Exercise 6.5.

Proof. (a) and (b) follow immediately from the first and second formula for the convolution product,
respectively. For (c), we compute, for any h ∈ G:

(
(
ρ(g)f

)
∗ f ′)(h) =

∫
G

f(xg)f ′(x−1h) dµG(x) = δG(g)

∫
G

f(xg)f ′(x−1h) dµG(xg)

= δG(g)

∫
G

f(y)f ′(gy−1h) dµG(y) = δG(g) · (f ∗
(
λ(g−1)f ′

)
)(h).

Proposition 7.4. For each compact open subset X ⊆ G, put

eX := vol(X;µG)−1 · 1X ∈ H(G).

Let K ⊆ G be a compact open subgroup.

(a) For each open subgroup H ⊆ K, one has eH ∗ eK = eK = eK ∗ eH . In particular, eK is an
idempotent.

(b) A function f ∈ H(G) satisfies eK ∗ f = f if and only if f(kg) = f(g) for all k ∈ K, g ∈ G.
Similarly, f ∗ eK = f if and only if f(gk) = f(g) for all k ∈ K, g ∈ G.

(c) The space H(G,K) := eK ∗H(G) ∗ eK is a subalgebra of H(G) with unit eK . It consists of all
functions f ∈ H(G) with f(kgk′) = f(g) for all k, k′ ∈ K, g ∈ G.
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Proof. Let g ∈ G. Note that the function x 7→ 1H(x)1K(x−1g) is the characteristic function of
H ∩ gK. Hence,

(eH ∗ eK)(g) = vol(H)−1 vol(K)−1

∫
G

1H(x)1K(x−1g) dµG(x)

=
vol(H ∩ gK)

vol(H) vol(K)
= eK(g).

A similar computation shows eK ∗ eH = eK , which proves (a). To prove (b), let f ∈ H(G). The
function eK ∗ f is left K-invariant by Lemma 7.3(b). This shows that, if eK ∗ f = f , then f is left
K-invariant. Conversely, if f is left K-invariant, then for any g ∈ G the function x 7→ 1K(x)f(x−1g)
coincides with f(g) · 1K , and hence

(eK ∗ f)(g) = vol(K)−1

∫
G

1K(x)f(x−1g) dµG(x)

= vol(K)−1 · µG(1K) · f(g) = f(g).

The remaining assertions in (b) are analogous.
Finally, (c) follows at once from (a) and (b).

Remark. It follows from Proposition 7.4(b) that for all f1, . . . , fn ∈ H(G) there exists an idempotent
eK ∈ H(G) with eK ∗ fi = fi = fi ∗ eK for all i. Even though H(G) does not admit a unit, it has
many idempotents. Such C-algebras are called idempotented.

Definition 7.5. (a) An H(G)-module is a C-vector space V together with a C-linear map

H(G)⊗C V −→ V,

f ⊗ v 7−→ π(f)v

which satisfies π(f)(π(f ′)v) = π(f ∗ f ′)v, for all f, f ′ ∈ H(G) and v ∈ V . More concisely, an
H(G)-module is a (non-unital) C-algebra homomorphism π : H(G) → EndC(V ). We often
write f ∗ v for π(f)v.

A C-linear map α : V → V ′ between H(G)-modules is called H(G)-linear if α(f ∗v) = f ∗α(v),
for all v ∈ V , f ∈ H(G).

(b) An H(G)-module V is called smooth if H(G)∗V = V , i.e., for all v ∈ V there exist f1, . . . , fn ∈
H(G) and v1, . . . , vn ∈ V such that v =

∑n
i=1 fi ∗ vi.

We denote
Mod(H(G))

the category with objects the smooth H(G)-modules and morphisms the H(G)-linear maps.

Exercise 7.6. Let V be an H(G)-module. Show that the following assertions are equivalent:

(i) V is smooth.

(ii) For all v ∈ V there exists a compact open subgroup K ⊆ G such that eK ∗ v = v.

Deduce that H(G) is a smooth H(G)-module.
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Theorem 7.7. There is an isomorphism of categories

Rep(G)
∼=−→ Mod(H(G)),

which is the identity on objects and morphisms.

Proof. Step 1: Let (V, π) ∈ Rep(G) be a smooth representation. We construct on V the structure
of a smooth H(G)-module.

First, it is convenient to introduce some notation. Denote C∞c (G,V ) the C-vector space of
functions f : G → V which are locally constant and have compact support. Then C∞c (G,V )
becomes a smooth G-representation via (gf)(g′) := π(g)f(g−1g′), for all g, g′ ∈ G, f ∈ C∞c (G,V ).

We claim that the map

C∞c (G)⊗C V
∼=−→ C∞c (G,V ), (2.6)

f ⊗ v 7−→ [g 7→ f(g)v]

is an isomorphism of smooth G-representations, where G acts diagonally on the left hand side via
g · (f ⊗ v) = λ(g)f ⊗ π(g)v.

Let Φ =
∑n
i=1 fi ⊗ vi ∈ C∞c (G) ⊗C V be in the kernel of (2.6). Since V admits a C-basis, we

may assume that v1, . . . , vn are linearly independent. But then the condition that Φ is in the kernel
is equivalent to fi = 0 for all i. Hence Φ = 0.

We show surjectivity. Let f ∈ C∞c (G,V ) be arbitrary. Since f is locally constant and has
compact support, we find a compact open subgroup K ⊆ G such that f(gk) = f(g), for all g ∈ G,
k ∈ K. Then f is the image of

∑
g∈G/K 1gK ⊗ f(g) (the sum is finite, because f has compact

support).
Now, there exists a unique G-equivariant map µG : C∞c (G,V )→ V making the diagram

C∞c (G)⊗C V C⊗C V

C∞c (G,V ) V

∼=

µG⊗idV

µG

commute. For each f ∈ C∞c (G,V ), we write∫
G

f(x) dµG(x) := µG(f) ∈ V.

We now define the H(G)-module structure on V . Let f ∈ H(G) and v ∈ V . The function
x 7→ f(x)π(x)v lies in C∞c (G,V ) and hence the element

π(f)v :=

∫
G

f(x)π(x)v dµG(x) ∈ V (2.7)

is well-defined. More concretely, we find a compact open subgroup K ⊆ G such that v ∈ V K and
f(gk) = f(g), for all g ∈ G, k ∈ K. Then f =

∑
g∈G/K f(g)1gK , and then

π(f)v =
∑

g∈G/K

f(g) · π(1gK)v = vol(K)
∑

g∈G/K

f(g)π(g)v. (2.8)
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This also shows that v ∈ V K if and only if π(eK)v = v.
For all f, f ′ ∈ H(G) and v ∈ V we verify that π(f ∗f ′)v = π(f)

(
π(f ′)v

)
. The formula is C-linear

in f and f ′ and hence by Lemma 6.3 we reduce to f ′ = 1gK and f = 1hU , where U,K ⊆ G are
compact open subgroups with U ⊆ gKg−1. Hence, we have to show

π
(
1hU ∗ 1gK

)
v = π(1hU )

(
π(1gK)v

)
.

Let γ ∈ G. Then x 7→ 1hU (x)1gK(x−1γ) is the characteristic function 1hU∩γKg−1 . Using g−1Ug ⊆
K, we deduce

hU ∩ γKg−1 =

{
hU, if γ ∈ hUgK = hgK;
∅, otherwise.

Now, (1hU ∗ 1gK)(γ) =
∫
G
1hU∩γKg−1(x) dµG(x) = vol(U)1hgK(γ). We compute

π
(
1hU ∗ 1gK

)
v = vol(U) · π(1hgK)v = vol(U) vol(K) · π(hg)v

= vol(U) vol(K) · π(h)π(g)v = vol(U)π(h)
(
π(1gK)v

)
= π(1hU )

(
π(1gK)v

)
.

Hence V is a smooth H(G)-module.
If ϕ : V →W is a G-equivariant map, it follows from (2.8) that ϕ is also H(G)-linear.

Step 2: Let V be a smooth H(G)-module. We construct on V the structure of a smooth
G-representation. We first claim that the map

H(G)⊗H(G) V
∼=−→ V, (2.9)

f ⊗ v 7−→ f ∗ v

is an H(G)-linear isomorphism. It is clearly well-defined and H(G)-linear. Surjectivity follows from
smoothness. To prove injectivity, let f1, . . . , fn ∈ H(G) and v1, . . . , vn ∈ V such that

∑n
i=1 fi∗vi = 0.

By Proposition 7.4(b) we find an idempotent eK ∈ H(G) such that fi = eK ∗ fi, for all i. Then

n∑
i=1

fi ⊗ vi =

n∑
i=1

(
eK ∗ fi ⊗ vi

)
=

n∑
i=1

(
eK ⊗ fi ∗ vi

)
= eK ⊗

n∑
i=1

fi ∗ vi = 0,

which shows that (2.9) is injective.

By Lemma 7.3(b) the space H(G) ⊗H(G) V is a smooth G-representation via g · (f ⊗ v) =(
λ(g)f

)
⊗ v. This induces on V the structure of a smooth G-representation. Concretely, if v ∈ V ,

we choose a compact open subgroup K ⊆ G with eK ∗ v = v and then

π(g)v = egK ∗ v. (2.10)

If ϕ : V →W is a H(G)-linear map, it follows from (2.10) that ϕ is G-equivariant.

Step 3: It remains to show that these actions determine each other. If (V, π) is a G-representation,
denote (V, τ) the G-representation obtained from V regarded as a H(G)-module. For each g ∈ G
we have τ(g)v = π(egK)v = π(g)v, where K ⊆ G is a compact open subgroup with v ∈ V K .
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Conversely, let (V, π) be a smooth H(G)-module and denote (V, τ) the H(G)-module obtained
from V regarded as a G-representation. Let f ∈ H(G) and v ∈ V . We have to show τ(f)∗v = π(f)∗v.
By Lemma 6.3, we reduce to the case where f is of the form 1gK with v ∈ V K . By (2.8) and (2.10),
we have τ(1gK)v = vol(K;µG) · π(g)v = π(1gK)v. This finishes the proof.

Lemma 7.8. Let (V, π) ∈ Rep(G) and let K ⊆ G be a compact open subgroup. Then π(eK) : V → V
is a K-equivariant projection with image V K and kernel

Ker(π(eK)) = V (K) :=
〈
v − π(k)v | v ∈ V, k ∈ K〉,

where 〈· · · 〉 denotes the C-linear span; in particular, V ∼= V K ⊕ V (K) as K-representations. More-
over, V K = π(eK)V is a unital H(G,K)-module.

Proof. The fact that π(eK) is a projection follows from Proposition 7.4(a). It is clear that π(eK)|V K

is the identity. Let v ∈ V and k ∈ K. Let H ⊆ K be an open normal subgroup with v ∈ V H .
Then π(eK)π(k)v = 1

[K:H]

∑
x∈K/H π(xk)v = 1

[K:H]

∑
x∈K/H π(x)v = π(eK)v, and it follows that

V (K) ⊆ Ker(π(eK)) and that π(eK) is K-equivariant. Conversely, if v ∈ Ker(π(eK)), then

v = v − π(eK)v = v − 1

[K : H]

∑
k∈K/H

π(k)v =
1

[K : H]

∑
k∈K/H

(
v − π(k)v

)
∈ V (K).

Hence, V (K) = Ker(π(eK)). The other assertions are clear.

We will now relate the irreducible smooth G-representations with the simple modules of the
Hecke algebras H(G,K).

Theorem 7.9. Let K ⊆ G be a compact open subgroup.

(a) Let (V, π) ∈ Rep(G) be irreducible. Then V K is either zero or a simple H(G,K)-module.
(b) We have a bijection isomorphism classes of

irreducible (V, π) ∈ Rep(G)
with V K 6= {0}


{

isomorphism classes of
simple H(G,K)-modules

}
,

(V, π) V K = π(eK)V.

∼=

Proof. We first prove (a). Let M ⊆ V K be a non-zero H(G,K)-submodule. As V is irreducible, we
have M ⊇ π

(
H(G,K)

)
M = π(eK)π

(
H(G)

)
M = π(eK)V = V K . Hence, V K is simple.

We have shown that the map in (b) is well-defined. We describe the inverse map. Let M be a
simple H(G,K)-module. Consider the smooth G-representation

W := H(G) ∗ eK ⊗H(G,K) M.

Then WK = π(eK)W = eK ∗ H(G) ∗ eK ⊗H(G,K) M ∼= M .
Let X(W ) ⊆W be the sum of all G-invariant subspaces X ⊆W with XK = {0}. Let X,Y ⊆W

be G-invariant subspaces with XK = Y K = {0} and consider the surjection X ⊕ Y →→ X + Y .
Lemma 5.8 shows that the map

{0} = XK ⊕ Y K = (X ⊕ Y )K −→→ (X + Y )K
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is surjective. Hence, (X + Y )K = {0}. Therefore, X(W ) ⊆ W is the largest G-invariant subspace
with X(W )K = {0}. We claim that t(M) := W/X(W ) is irreducible. If X(W ) $ U ⊆ W is a
G-invariant subspace, then UK 6= {0} is a H(G,K)-submodule of M . As M is simple, we have
UK = M and hence W = H(G) ∗ eK ⊗H(G,K) U

K ⊆ U . Hence, t(M) is irreducible. Again by
Lemma 5.8, we have t(M)K = WK/X(W )K = WK = M .

We need to show that the map [M ] 7→ [t(M)] is well-defined. Let f : M
∼=−→M ′ be an H(G,K)-

linear isomorphism, we obtain a G-equivariant isomorphism

f : W = H(G) ∗ eK ⊗H(G,K) M
∼=−→ H(G) ∗ eK ⊗H(G,K) M

′ =: W ′

such that f(X(W )) = X(W ′). Hence, we obtain an isomorphism t(M)
∼=−→ t(M ′).

It remains to prove injectivity of the map in (b). Let (V, π) ∈ Rep(G) be irreducible. The
inclusion V K ⊆ V induces a non-zero map f : W := H(G)∗eK⊗H(G,K)V

K → V . Since f(X(W )) ⊆
V is a G-invariant subspace with f(X(W ))K = π(eK)f(X(W )) = f(π(eK)X(W )) = f(X(W )K) =
{0} and V is irreducible, we deduce f(X(W )) = {0}. Consequently, f factors through a non-zero
map

f : t(V K)→ V.

Since both t(V K) and V are irreducible, we have Ker(f) = {0} and Im(f) = V , hence f is an
isomorphism.

Exercise. Let (V, π) ∈ Rep(G) be a non-zero representation. Show that (V, π) is irreducible if
and only if for each compact open subgroup K ⊆ G, the space V K is either zero or a simple
H(G,K)-module.

Definition 7.10. We say G is countable at infinity if for some (equivalently, for each) compact
open subgroup K ⊆ G the set G/K is countable.

The next result shows that the Hecke algebra H(G) behaves like a semisimple algebra. This will
be made more precise in §11.

Theorem 7.11 (Separation Lemma). Suppose G is countable at infinity. Let f ∈ H(G) with f 6= 0.
There exists an irreducible smooth G-representation (V, π) such that π(f) 6= 0.

Proof. Fix a compact open subgroup K ⊆ G with f = eK ∗ f ∗ eK ∈ H(G,K). Define f† ∈ H(G,K)
by f†(g) := f(g−1), where the overline means complex conjugation. We have

(f† ∗ f)(1) =

∫
G

|f(x−1)|2 dµG(x) 6= 0.

Hence h := f† ∗ f 6= 0, and for each g ∈ G we compute

h†(g) = (f† ∗ f)(g−1) =

∫
G

f†(x) · f(x−1g−1) dµG(x)

=

∫
G

f(x−1) · f(x−1g−1) dµG(x) =

∫
G

f
(
(gx)−1

)
· f(x−1) dµG(x)

=

∫
G

f†(gx) · f(x−1) dµG(x) = (f† ∗ f)(g) = h(g);



30 Chapter 2. Smooth Representations of Locally Profinite Groups

thus, h† = h. By induction we see h2n = (h† ∗ h)2n−1 6= 0 for all n; hence h ∈ H(G,K) is not
nilpotent. Since G is countable at infinity, it follows that H(G,K) ⊆ C∞c (G/K) has countable
dimension over C (Proposition 7.4 and Lemma 6.3). The assertion now follows from the next
lemma.

Lemma 7.12. Let R be an associative unital C-algebra of countable dimension and let h ∈ R be a
non-nilpotent element.

(a) There exists a ∈ C× such that R(h− a) $ R.

(b) There exists a simple R-module M with hM 6= {0}.

Proof. We prove (a). If h ∈ C, then a = h is as desired. Otherwise, we assume for a contradiction
that R(h − a) = R for all a ∈ C×. Then the uncountable family

{
1/(h − a) | a ∈ C×

}
is linearly

dependent, since R has countable dimension. Hence, there exist b1, . . . , bn ∈ C× and pairwise distinct
a1, . . . , an ∈ C× such that

∑n
i=1 bi · 1/(h− ai) = 0. Multiplying from the right by

∏
i(h− ai), we

obtain a non-zero polynomial P (t) ∈ C[t] with P (h) = 0. As C is algebraically closed, we can write
0 = P (h) = hn0

∏
j(h− cj)nj , for certain cj ∈ C× and n0, nj ∈ Z>1. As h is not nilpotent, it follows

that one of the factors h − cj is a (left) zero-divisor, hence R(h − cj) 6= R, which contradicts our
assumption.

We prove (b). By (a) there exists a ∈ C× such that R(h − a) is a proper left ideal in R. By
Zorn’s lemma there exists a maximal left ideal m ⊆ R containing h − a. For M := R/m, we then
have hM = aM = M 6= 0.

§8. Smooth Representations of Profinite Groups

Let K be a profinite group. In this section we give a precise description of the category Rep(K) of
smooth K-representations. We start with a general result.

Proposition 8.1. Let G be a group. For V ∈ Mod(C[G]), the following are equivalent:

(i) There exists a family {Wi}i∈I of irreducible subrepresentations of V such that V =
∑
i∈IWi.

(ii) There exists a family {Wi}i∈I of irreducible G-representations with V ∼=
⊕

i∈IWi.

(iii) For every G-invariant subspace W ⊆ V , there exists a G-invariant subspace W ′ ⊆ V with
V = W ⊕W ′.

If these conditions are satisfied, we call V semisimple.

Proof. We show that (i) implies (ii) and (iii). Let W ( V be a proper G-invariant subspace and
write V =

∑
i∈IWi as in (i). The set

X :=
{
J ⊆ I

∣∣∣W +
∑
j∈J

Wj is a direct sum
}

is partially ordered with respect to inclusion and non-empty, since ∅ ∈ X. Let Y ⊆ X be a totally
ordered subset and put J0 :=

⋃
J∈Y J . We claim J0 ∈ X, that is, W +

∑
j∈J0 Wj is a direct sum.

We have to show that the obvious map α : W ⊕
⊕

j∈J0 Wj →W +
∑
j∈J0 Wj is injective. Pick any

w ∈ Ker(α). Since Y is totally ordered, we have w ∈ W ⊕
⊕

j∈JWj for some J ∈ Y . But since
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J ∈ X, this shows w = 0 and hence α is injective. We have shown that the upper bound J0 of Y is
contained in X.

Hence, Zorn’s Lemma applies and gives a maximal element J ∈ X. Put V ′ := W+
∑
j∈JWj ⊆ V .

Take any i ∈ I r J . As Wi is irreducible, we have either Wi ∩ V ′ = {0} or Wi ∩ V ′ = Wi. In the
first case, W +

∑
j∈J∪{i}Wj is direct and hence J ∪ {i} ∈ X, which contradicts the maximality of

J . Hence, we must have Wi ⊆ V ′. As i ∈ I r J was arbitrary, we conclude V =
∑
i∈IWi ⊆ V ′.

This shows that W ′ :=
∑
j∈JWj is a G-invariant complement of W , whence (iii). The particular

case W = {0} proves (ii).
The implication “(ii) =⇒ (i)” is trivial. It remains to prove “(iii) =⇒ (i)”. Let V ′ =

∑
i∈IWi be

the sum of all irreducible subrepresentations of V . Assume for a contradiction that V ′ $ V . By
assumption, there exists a G-invariant subspace V ′′ ⊆ V with V ′ ⊕ V ′′ = V . Let v ∈ V ′′ r {0} and
let a $ C[G] be the kernel of the orbit map φ : C[G]→ V ′′, f 7→ fv. By Zorn’s Lemma, there exists
a maximal left ideal m ( C[G] with a ⊆ m. By (iii), there exists a G-invariant subspace U ⊆ V

with V ′⊕mv⊕U = V . The kernel of the composite map C[G]
φ−→ V

prU−−→ U is m. Hence U contains
the irreducible subrepresentation C[G]/m. But then U ∩ V ′ 6= {0} by the definition of V ′, which
contradicts U ∩ V ′ = {0}. Hence, the assumption was wrong and we have V ′ = V .

Exercise 8.2. Let G be a group and let V ∈ Mod(C[G]) be semisimple. Show that for every
G-invariant subspace W ⊆ V one has that W and V/W are semisimple.

Proposition 8.3. Let G be a group and H ⊆ G a subgroup of finite index. Let (V, π) ∈ Mod(C[G]).
Then (V, π) is semisimple if and only if (V, π|H) is semisimple.

Proof. Step 1: Suppose that (V, π|H) is semisimple. Let W ⊆ V be a G-invariant subspace. By
assumption, there exists an H-invariant subspace W ′ ⊆ V such that V = W ⊕ W ′. Denote
f ′ : V →W the corresponding H-equivariant projection. The map

f : V −→W,

v 7−→ 1

[G : H]
·
∑

g∈G/H

gf ′(g−1v)

is G-equivariant and the identity on W . Hence, Ker(f) is G-invariant, and V = W ⊕ Ker(f). By
Proposition 8.1, (V, π) is semisimple.

Step 2: Suppose (V, π) is semisimple. The subgroup H0 :=
⋂
g∈G/H gHg

−1 ⊆ G is normal and
has finite index, because the canonical map G/H0 →

∏
g∈G/H G/gHg

−1 is injective. It suffices to
show that (V, π|H0

) is semisimple, because then also (V, π|H) is semisimple by Step 1. Without
loss of generality, we may assume that (V, π) is irreducible. As [G : H0] is finite, (V, π|H0

) is
finitely generated as a C[H0]-module. By Zorn’s Lemma, there exists an H0-equivariant surjection
φ : (V, π|H0

) →→ (U, σ) onto an irreducible H0-representation (U, σ). For any g ∈ G, define the
H0-representation (U, g∗σ) by g∗σ(h) := σ(g−1hg), which is clearly irreducible. Fix a representing
system g1, . . . , gr ∈ G of G/H0. Observe that (E, τ), given by E := C[G]⊗C[H0]U and τ(g)(f⊗u) :=
egf ⊗ u, is a G-representation and that (E, τ|H0

) ∼=
⊕r

i=1(U, gi∗σ). The map

Φ: (V, π) −→ (E, τ),

v 7−→
r∑
i=1

egi ⊗ φ
(
π(g−1

i )v
)
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is non-zero. We verify that it is G-equivariant. Let g ∈ G. For each i, there exist unique 1 6 j(i) 6 r
and hi ∈ H with g−1gi = gj(i)h. Note that the map i 7→ j(i) is bijective. Hence, we compute

Φ(π(g)v) =

r∑
i=1

egi ⊗ φ
(
π(g−1

i )π(g)v
)

=

r∑
i=1

egeg−1gi ⊗ φ
(
π(g−1gi)

−1v
)

= τ(g)

r∑
i=1

egj(i)eh ⊗ φ
(
π(h−1)π(g−1

j(i))v
)

= τ(g)

r∑
i=1

egj(i) ⊗ φ
(
π(g−1

j(i))v
)

= τ(g)Φ(v).

Hence, the map Φ is G-invariant. As V is irreducible, we deduce that Φ is injective. Hence, (V, π|H0
)

is isomorphic to a subrepresentation of the semisimple H0-representation
⊕r

i=1(U, gi∗σ), hence itself
semisimple by Exercise 8.2.

Example 8.4 (Maschke’s Theorem). Let G be a finite group. Then every G-representation is
semisimple by Proposition 8.3 (for H = {1}).

Let now K be a profinite group.

Theorem 8.5. (a) Every irreducible V ∈ Rep(K) has finite dimension over C.
(b) For every finite dimensional smooth K-representation V there exists an open normal subgroup

N ⊆ K such that V = V N .
(c) Every V ∈ Rep(K) is semisimple.

Proof. (a) was proved in Lemma 5.7. For (b), we pick a basis v1, . . . , vn of V together with open
subgroups Ki of K with vi ∈ V Ki . Then any open normal subgroup N ⊆ K satisfying N ⊆

⋂n
i=1Ki

is as desired.
We prove (c). We show that each v ∈ V is contained in a semisimple subrepresentation of

V . Pick an open normal subgroup H ⊆ K with v ∈ V H . Then W :=
∑
k∈K/H Ckv ⊆ V H is a

representation of the finite group K/H, hence is semisimple by Maschke’s Theorem. Thus, W is a
semisimple K-representation.

Schur’s Lemma 8.6. Let (V, τ) be an irreducible smooth K-representation. Then

EndK(V ) ∼= C.

Proof. Let ϕ : V → V a non-zeroK-equivariant map. Since V is finite dimensional by Lemma 5.7 and
C is algebraically closed, ϕ has an eigenvalue a ∈ C. Now, the kernel of the map ϕ− a idV : V → V
is a non-zero K-invariant subspace of V . As V is irreducible, it follows that ϕ− a idV = 0.

Theorem 8.7. Let VectC be the category of C-vector spaces. Let
∏
τ∈Irr(K) VectC be the category

whose objects are tuples (Vτ )τ consisting of a C-vector space Vτ for each τ ∈ Irr(K). A morphism
(Vτ )τ → (V ′τ )τ consists of a tuple (ϕτ )τ , where each ϕτ : Vτ → V ′τ is a C-linear map. The functors

A :
∏

(Vτ ,τ)∈Irr(K) VectC Rep(K) :F ,

(Wτ )τ
⊕

τ∈Irr(K)Wτ ⊗C Vτ(
HomK(Vτ , V )

)
τ

V

∼=
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where K acts on the second factor of Wτ ⊗C Vτ , are quasi-inverse equivalences of categories.

Proof. Let (V, π) ∈ Rep(K). For each (Vτ , τ) ∈ Irr(K) we let V (τ) be the sum of all irreducible
subrepresentations of V which are isomorphic to τ ; we call V (τ) the τ -isotypic component of V .
Note that the map

HomK(Vτ , V )⊗C Vτ
∼=−→ V (τ), (2.11)

ϕ⊗ v 7−→ ϕ(v),

is an isomorphism: Every K-equivariant map Vτ → V factors through V (τ); hence HomK(Vτ , V ) =
HomK(Vτ , V (τ)). Write V (τ) =

⊕
I Vτ for some set I. We have isomorphisms

HomK(Vτ , V )⊗C Vτ = HomK

(
Vτ , V (τ)

)
⊗C Vτ

∼=
⊕
I

HomK(Vτ , Vτ )⊗C Vτ (Vτ is finitely generated)

∼=
⊕
I

Vτ (Schur’s Lemma 8.6)

∼= V (τ).

Now check that the composite coincides with (2.11). For the second isomorphism, we have
used that Vτ is finitely generated as a K-representation.3 We obtain a natural isomorphism
A
(
F(V )

)
=
⊕

τ∈Irr(K) HomK(Vτ , V ) ⊗C Vτ ∼=
⊕

τ V (τ) = V , where the second equality follows
from Theorem 8.5(c).

Let now (Wτ )τ ∈
∏
τ VectC. For each (Vσ, σ) ∈ Irr(K) we have

(⊕
τ Wτ ⊗C Vτ

)
(σ) = Wσ⊗C Vσ.

By Schur’s Lemma 8.6, and since Vσ is finitely generated, we have isomorphisms

Wσ
∼= HomK(Vσ, Vσ)⊗C Wσ

∼= HomK

(
Vσ,Wσ ⊗C Vσ

)
.

Hence, we have a natural isomorphism

F
(
A
(
(Wτ )τ

))
= F

(⊕
τ

Wτ ⊗C Vτ

)
=
[
HomK

(
Vσ,
⊕
τ

Wτ ⊗C Vτ

)]
σ

=
[
HomK(Vσ,Wσ ⊗C Vσ)

]
σ
∼=
[
Wσ

]
σ
.

This finishes the proof.

Remark. Theorem 8.7 makes precise the idea that Rep(K) is completely determined by the set
Irr(K) of (isomorphism classes of) irreducible smooth K-representations. If G is a locally profinite
group, then not every smooth G-representation will be semisimple. Hence, the category Rep(G) has
a lot more structure than Rep(K).

Our ultimate goal in this lecture will be to prove a decomposition theorem for Rep(GLn(F ))
when F is a local field.

3Given a family of K-representations Wi, i ∈ I, we have a map
⊕
i∈I HomK(Vτ ,Wi) → HomK(Vτ ,

⊕
i∈IWi),

(ϕi)i 7→ [v 7→
∑
i∈I ϕi(v)]. Injectivity is clear. In order to prove surjectivity, let ϕ ∈ HomK(Vτ ,

⊕
i∈IWi). Let

v ∈ Vτ r {0} so that ϕ(v) ∈
⊕
j∈J Wj for some finite subset J ⊆ I. As Vτ is irreducible, it is generated by v, hence

ϕ(Vτ ) ⊆
⊕
j∈J Wj . Denoting prj :

⊕
i∈IWi → Wj the j-th projection, we deduce that ϕ is the image of (ϕi)i,

where ϕi = 0 for i ∈ I r J and ϕj = prj ◦ϕ for j ∈ J .
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Exercise. Let F be a local field. Construct an equivalence of categories

Rep(F×) ∼=
∏

χ∈Irr(o×F )

Mod
(
C[t, t−1]

)
.

§9. Smooth and Compact Induction

Let G be a locally profinite group and let H ⊆ G be a closed subgroup. There is a forgetful functor

ResGH : Rep(G) −→ Rep(H)

defined by ResGH(V, π) = (V, π|H), where π|H is the restriction of π : G → AutC(V ) to H. (We
will often just write V or ResGH V or π|H instead of ResGH(V, π).) In this section we will construct
two functors in the other direction, Rep(H) → Rep(G), which allow us to construct new smooth
G-representations out of smooth H-representations.

Definition 9.1. Let (W,σ) ∈ Rep(H) be a smooth H-representation. Put

INDG
HW := {f : G→W | f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G} .

The group G acts on INDG
HW via right translation: (gf)(g′) := f(g′g) for all f ∈ INDG

HW and
g, g′ ∈ G. We define IndGHW as the (G-invariant) subspace of all functions f ∈ INDG

HW which have
an open stabilizer. We denote the induced action of G on IndGH by IndGH σ. We obtain a functor

IndGH : Rep(H) −→ Rep(G),

defined by IndGH(W,σ) := (IndGHW, IndGH σ), which we call smooth induction.

Example 9.2. If W = C is the trivial H-representation, then IndGH C =: C∞(H\G) is the space
of all functions f : G → C for which there exists a compact open subgroup K ⊆ G such that
f(hgk) = f(g) for all h ∈ H, g ∈ G, k ∈ K. These functions are also called uniformly locally
constant .

Proposition 9.3 (Frobenius Reciprocity). Let (V, π) ∈ Rep(G) and (W,σ) ∈ Rep(H). Consider
the H-equivariant homomorphism IndGHW →W , f 7→ f(1). Then the canonical map

α∗ : HomG(π, IndGH σ)
∼=−→ HomH(π|H , σ),

φ 7−→
[
v 7→ φ(v)(1)

]
is a C-linear isomorphism, natural in V and W .

Proof. The map is clearly well-defined, C-linear, and natural in V and W . We describe the inverse
map. Consider the natural map

β : V −→ IndGH V,

v 7−→ [g 7→ π(g)v].
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Note that β(v) lies in IndGH V : Let K ⊆ G be a compact open subgroup with v ∈ V K . Then
β(v)(gk) = π(gk)v = π(g)π(k)v = π(g)v = β(v)(g) for all g ∈ G and k ∈ K. Moreover, β is
G-equivariant, since for all v ∈ V , g, g′ ∈ G we have(

gβ(v)
)
(g′) = β(v)(g′g) = π(g′g)v = π(g′)

(
π(g)v

)
= β

(
π(g)v

)
(g′).

We claim that the natural map

β∗ : HomH

(
π|H , σ

)
−→ HomG

(
π, IndGH σ

)
,

ψ 7−→
[
v 7→ ψ ◦ β(v)

]
is inverse to α∗. Let ψ : V →W be H-equivariant. We claim that α∗(β∗(ψ)) = ψ: Indeed, for each
v ∈ V we compute

α∗
(
β∗(ψ)

)
(v) = β∗(ψ)(v)(1) = ψ

(
β(v)(1)

)
= ψ(v).

Conversely, let φ : V → IndGHW be G-equivariant. We claim that β∗(α∗(φ)) = φ: Indeed, for all
v ∈ V and g ∈ G we compute[

β∗
(
α∗(φ)

)
(v)
]
(g) = α∗(φ)

(
β(v)(g)

)
= α∗(φ)

(
π(g)v

)
= φ

(
π(g)v

)
(1) = (gφ)(v)(1) = φ(v)(g).

This shows that α∗ is an isomorphism.

Remark. In categorical terms, Proposition 9.3 says that the functor IndGH is right adjoint to ResGH
(or that ResGH is left adjoint to IndGH). We will later show that, if H ⊆ G is open, then ResGH also
admits a left adjoint.

Exercise 9.4. Let G be a locally profinite group and N E G a closed normal subgroup. Denote
ϕ : G→→ G/N the projection. For (W,σ) ∈ Rep(G/N) we write Inf

G/N
G σ = σ ◦ ϕ : G→ AutC(W ).

We obtain a smooth representation Inf
G/N
G (W,σ) := (W, Inf

G/N
G σ) ∈ Rep(G). Let (V, π) ∈ Rep(G).

(a) Show that G/N naturally acts on V N and that it yields a smooth representation (V N , πN ) ∈
Rep(G/N). Construct a natural C-linear bijection

HomG

(
Inf

G/N
G σ, π

) ∼=−→ HomG/N

(
σ, πN

)
.

Hence, Inf
G/N
G is left adjoint to π 7→ πN . Informally, this means that V N is the biggest

subspace of V on which N acts trivially.

(b) Show that G/N naturally acts on VN := V/V (N), where V (N) = 〈v − π(n)v | v ∈ V, n ∈ N〉,
and that it yields a smooth representation (VN , JN (π)) ∈ Rep(G/N). Construct a natural
C-linear bijection

HomG

(
π, Inf

G/N
G σ

) ∼=−→ HomG/N

(
JN (π), σ

)
.

Hence, Inf
G/N
G is right adjoint to JN , which is called the Jacquet functor . Informally, this

means that VN is the biggest quotient of V on which N acts trivially.
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Proposition 9.5 (Mackey decomposition). Let K be an open and H a closed subgroup of G. Let
(W,σ) ∈ Rep(H). For each g ∈ G denote (W, g−1

∗ σ) ∈ Rep(g−1Hg) the representation given by
(g−1
∗ σ)(x) := σ(gxg−1) for each x ∈ g−1Hg. The map

ResGK IndGH σ
∼=−→
( ∏
g∈H\G/K

IndKg−1Hg∩K g
−1
∗ (σ|H∩gKg−1)

)∞
,

f 7−→ (fg)g, where fg(k) = f(gk),

is a K-equivariant isomorphism.

Proof. Since the double cosets HgK are open in G, we have a K-equivariant isomorphism

ResGK IndGH σ
∼=−→
( ∏
g∈H\G/K

IndHgKH σ
)∞

,

f 7−→
(
f|HgK

)
g
.

Hence, for each fixed g ∈ G, we have to show that the map

IndHgKH σ
∼=−→ IndKg−1Hg∩K g

−1
∗ σ|H∩gKg−1 , (2.12)

f 7−→ [k 7→ f(gk)] = fg

is a K-equivariant isomorphism. Note that fg is well-defined: Let k ∈ K and x ∈ g−1Hg∩K. Then

fg(xk) = f(gxk) = f(gxg−1gk) = σ(gxg−1)f(gk) =
(
g−1
∗ σ|H∩gKg−1

)
(x)fg(k).

As K acts by right translation, it is clear that f 7→ fg is K-equivariant. The inverse map is given by

f ′ 7→ f̂ ′ :=
[
hgk 7→ σ(h)f ′(k)

]
.

Again, f̂ ′ is well-defined: Let h, h′ ∈ H and k, k′ ∈ K with hgk = h′gk′. Then x := kk′−1 =
g−1h−1h′g ∈ g−1Hg ∩K. We deduce xk′ = k and hgxg−1 = h′ and compute

f̂ ′(hgk) = σ(h)f ′(k) = σ(h)f ′(xk′) = σ(h)g−1
∗ σ|H∩gKg−1(x)f ′(k′)

= σ(h)σ(gxg−1)f ′(k′) = σ(hgxg−1)f ′(k′) = σ(h′)f ′(k′).

Finally, we check f̂g(hgk) = σ(h)fg(k) = σ(h)f(gk) = f(hgk) and (f̂ ′)g(k) = f̂ ′(gk) = f ′(k) for all
k ∈ K and h ∈ H. Hence, the maps f 7→ fg and f ′ 7→ f̂ ′ are indeed inverse to each other.

Definition 9.6. Let (W,σ) ∈ Rep(H). The subspace

indGHW :=
{
f ∈ IndGHW

∣∣∣ the image of Supp(f) in H\G is compact
}
⊆ IndGHW

is G-invariant; here, Supp(f) satisfies Supp(gf) = Supp(f)g−1 for g ∈ G, and is defined as in
Example 5.3(c). We obtain a functor

indGH : Rep(H) −→ Rep(G),

defined by indGH(W,σ) :=
(
indGHW, indGH σ

)
, is called compact induction.
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Remark. If H\G is compact, then indGHW = IndGHW .

Exercise 9.7. Recall that an additive functor F : Rep(H) → Rep(G) is called exact if for all
H-equivariant maps W ′ φ−→W

ψ−→W ′′ with Ker(ψ) = Im(φ) the induced maps

F(W ′)
F(φ)−−−→ F(W )

F(ψ)−−−→ F(W ′′)

satisfy Ker
(
F(ψ)

)
= Im

(
F(φ)

)
. Show that the induction functors indGH and IndGH are exact.

Construction 9.8. Suppose H ⊆ G is open, and let (W,σ) ∈ Rep(H). For all g ∈ G and w ∈W
we define [g, w] ∈ indGHW via

[g, w](x) :=

{
σ(xg)w, if x ∈ Hg−1,
0, otherwise.

Note that [g, w] is the unique function in indGHW with Supp([g, w]) = Hg−1 and [g, w](g−1) = w.
The following properties are immediate:

(i) [gg′, w] = g[g′, w] for all g, g′ ∈ G, w ∈W ;

(ii) [gh,w] = [g, σ(h)w] for all h ∈ G, g ∈ G, w ∈W ;

(iii) f =
∑
g∈H\G[g−1, f(g)] for all f ∈ indGHW .4

Proposition 9.9 (Frobenius Reciprocity). Suppose H is open in G. Let (W,σ) ∈ Rep(H) and
(V, π) ∈ Rep(G). The canonical map

β∗ : HomG(indGH σ, π)
∼=−→ HomH(σ, π|H),

ψ 7−→
[
w 7→ ψ([1, w])

]
is a C-linear isomorphism, natural in V and W .

Proof. The map is clearly well-defined, C-linear, and natural in V and W . We describe the inverse
map. Consider the natural map

α : indGH ResGH(V ) −→ V,

[g, v] 7−→ π(g)v

and extend by linearity (see (iii) above). It is clear from (i) that α is G-equivariant. We claim that
the natural map

α∗ : HomH(σ, π|H) −→ HomG(indGH σ, π),

φ 7−→
[
[g, w] 7→ π(g)φ(w)

]
is inverse to β∗. Let φ : W → V be H-equivariant. We claim that β∗(α∗(φ)) = φ: Indeed, for each
w ∈W we compute

β∗
(
α∗(φ)

)
(w) = α∗(φ)

(
[1, w]

)
= π(1)φ(w) = φ(w).

4Recall: “g ∈ H\G” means that g runs through a set of representatives of H\G, and that the sum is finite and
independent of this choice.
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Conversely, let ψ : indGHW → V be G-equivariant. We claim that α∗(β∗(ψ)) = ψ: Indeed, for all
[g, w] ∈ indGHW we have

α∗
(
β∗(ψ)

)
([g, w]) = π(g)β∗(ψ)(w) = π(g)ψ

(
[1, w]

)
= ψ

(
g[1, w]

)
= ψ

(
[g, w]

)
.

Hence, β∗ is an isomorphism.

Corollary 9.10. Let (V, π) ∈ Rep(G) and K ⊆ G a compact open subgroup. Then

HomG

(
indGK C, V

) ∼=−→ V K ,

φ 7−→ φ([1, 1])

is a C-linear isomorphism.

Proof. By Proposition 9.9 it suffices to show that

HomK

(
C, V

)
−→ V K ,

φ 7−→ φ(1)

is an isomorphism. If φ : C→ V is K-equivariant, then kφ(1) = φ(k.1) = φ(1) for all k ∈ K, so that
φ(1) ∈ V K . The rest is clear.

§10. The Contragredient and Admissibility

Let G be a locally profinite group. If (V, π) is a smooth G-representation, then the algebraic dual

V ∗ := HomC(V,C)

admits a G-action via (gϕ)(v) := ϕ(π(g−1)v), for ϕ ∈ V ∗, v ∈ V and g ∈ G. However, the
G-representation V ∗ need not be smooth.

Exercise. Find a locally profinite group G and V ∈ Rep(G) such that V ∗ is not smooth.
(Hint: Realize the example in Exercise 5.5 as an algebraic dual of a smooth Zp-representation.)

Definition 10.1. Let (V, π) ∈ Rep(G). Let Ṽ ⊆ V ∗ be the subspace consisting of all C-linear forms
ϕ : V → C which have an open stabilizer. This defines a smooth G-representation (Ṽ , π̃) called the
contragredient (or smooth dual) representation of (V, π). We then have a canonical pairing

〈 · , · 〉 : Ṽ × V −→ C, (2.13)
(ξ, v) 7−→ 〈ξ, v〉 := ξ(v).

Note that 〈π̃(g)ξ, π(g)v〉 = 〈ξ, v〉 for all g ∈ G, ξ ∈ Ṽ , and v ∈ V .

Lemma 10.2. Let (V, π) ∈ Rep(G) and let K ⊆ G be a compact open subgroup. Then

Ṽ K = (V ∗)K ∼= (V K)∗.

In particular, for all non-zero v ∈ V there exists ξ ∈ Ṽ with 〈ξ, v〉 6= 0.
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Proof. Only the isomorphism needs a proof. Let V (K) = 〈v−π(k)v | v ∈ V, k ∈ K〉. By Lemma 7.8
we have a decomposition

V ∼= V K ⊕ V (K) (2.14)

as K-representations. For ξ ∈ V ∗ = (V K)∗ ⊕ V (K)∗ we have the following equivalences:

ξ ∈ (V ∗)K ⇐⇒ ξ
(
π(k)v

)
= ξ(v), for all k ∈ K, v ∈ V

⇐⇒ ξ|V (K) = 0,

⇐⇒ ξ ∈ (V K)∗.

For the last assertion, let K ⊆ G be a compact open subgroup with v ∈ V K . Then take any
ξ ∈ (V K)∗ ⊆ Ṽ with ξ(v) 6= 0.

In order to reasonably study smooth representations, we need to impose some finiteness condi-
tions.

Definition 10.3. A smooth G-representation (V, π) is called admissible if V K is finite dimensional
for all compact open subgroups K ⊆ G.

Exercise. Let (V, π) ∈ Rep(G) and fix a compact open subgroup K ⊆ G. Show that the following
are equivalent:

(i) (V, π) is admissible;

(ii) HomK(τ, π|K) is finite dimensional, for all τ ∈ Irr(K).

(Hint: For “(i) =⇒ (ii)” use that each τ ∈ Irr(K) becomes trivial after restriction to some open
subgroup. For “(ii) =⇒ (i)”, decompose indKH C into irreducible components, for each open H ⊆ K.)

Proposition 10.4. Let (V, π) ∈ Rep(G). The following are equivalent:

(i) (V, π) is admissible;

(ii) (Ṽ , π̃) is admissible;

(iii) The canonical map V → ˜̃V , sending v to the map [φ 7→ φ(v)], is an isomorphism.

Proof. Apply Lemma 10.2. Note that V → ˜̃V is an isomorphism if and only if for all compact open
subgroups K ⊆ G the map V K →

( ˜̃V )K = (V K)∗∗ is bijective.

Exercise 10.5. (a) Show that the functor V 7→ Ṽ is exact. (Hint: Use Lemma 5.8.)

(b) Let (V, π) ∈ Rep(G) be admissible. Show that (V, π) is irreducible if and only if (Ṽ , π̃) is
irreducible.

Schur’s Lemma 10.6. Let (V, π) ∈ Rep(G) be an irreducible representation. Then EndG(V ) is a
division algebra.5

If, in addition, (V, π) is admissible, then EndG(V ) ∼= C.
5A division algebra is an associative unital C-algebra D such that every non-zero element of D has a two-sided

multiplicative inverse in D.
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Proof. Let ϕ ∈ EndG(V ), ϕ 6= 0. Then Ker(ϕ) $ V and {0} 6= Im(ϕ) ⊆ V are G-invariant
subspaces. As V is irreducible, we have Ker(ϕ) = {0} and Im(ϕ) = V . Hence ϕ is an isomorphism.
This shows that EndG(V ) is a division algebra.

Suppose now that (V, π) is admissible. Choose a compact open subgroup K ⊆ G such that V K
is non-zero. Now, let ϕ ∈ EndG(V ). As V K is finite dimensional and C is algebraically closed, ϕ|V K
admits an eigenvalue, say, λ ∈ C. Then ϕ − λ idV ∈ EndG(V ) is not an isomorphism and hence
ϕ− λ idV = 0 by the discussion above.

Exercise 10.7. Let (V, π) ∈ Rep(G) be an irreducible admissible representation. Let B : Ṽ × V → C
be a C-bilinear form such that B

(
π̃(g)ξ, π(g)v

)
= B(ξ, v) for all g ∈ G and all v ∈ V , ξ ∈ Ṽ .

Show that there exists a ∈ C such that B(ξ, v) = a · 〈ξ, v〉 for all v ∈ V , ξ ∈ Ṽ .

Proposition 10.8. Let G,H be locally profinite groups and let (V, π) ∈ Rep(G), (W,σ) ∈ Rep(H)
be irreducible admissible representations. Then (V ⊗CW,π⊗ σ) is an irreducible admissible G×H-
representation.

Proof. We first show that V ⊗C W is admissible. For all compact open subgroups K ⊆ G and
U ⊆ H, we have

(
V ⊗C W

)K×U
=
((
V ⊗C W

)K×{1}){1}×U
=
(
V K ⊗C W

){1}×U
= V K ⊗C W

U , (2.15)

which is finite dimensional, since V and W are admissible. As every compact open subgroup of
G×H contains a group of the form K × U , it follows that V ⊗C W is admissible.

To check that V ⊗C W is irreducible, let X ⊆ V ⊗C W be a non-zero G×H-invariant subspace.
If X contains a simple tensor, say v ⊗ w, then

V ⊗W = C[G]v ⊗ C[H]w = (C[G]⊗ C[H]) · (v ⊗ w) ⊆ X

shows that X = V ⊗C W . Hence, it suffices to show that X contains a non-zero simple tensor. Let
now x =

∑n
i=1 vi ⊗ wi ∈ X, where n ∈ Z>1, v1, . . . , vn ∈ V , and w1, . . . , wn ∈ W . Without loss of

generality, we may assume that v1, . . . , vn are C-linearly independent and that wn 6= 0. By Schur’s
Lemma 10.6, we have EndG(V ) ∼= C. We can thus apply Jacobson’s Density Theorem 10.9 to obtain
r ∈ C[G] such that rvi = vi for 1 6 i 6 n− 1, and rvn = 0. Then 0 6= vn ⊗ wn = x− (r ⊗ 1)x ∈ X
as desired.

Jacobson’s Density Theorem 10.9. Let R be an associative unital ring, let M be a simple left
R-module. Write D := EndR(M).6 Let x1, . . . , xn ∈ M be linearly independent over D, and let
y1, . . . , yn ∈M be arbitrary. Then there exists r ∈ R such that rxi = yi for all i = 1, . . . , n.

Proof. The argument is taken from [Put]. We do an induction on n. Let n = 1. Then any
x ∈M r {0} is D-linearly independent, and Rx = M , since M is simple. Hence, the statement is
clear.

Now, let n > 1. We will show the following

Claim. There exist λ1, . . . , λn ∈ R such that λixi 6= 0 for all 1 6 i 6 n, and λixj = 0 for all i 6= j.

6Note that D is a division algebra by Schur’s Lemma 10.6 and M is a D-module.
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One the claim is proven, we argue as follows: By the case n = 1, we find ri ∈ R such that
riλixi = yi for each i. Then r =

∑n
i=1 riλi ∈ R satisfies rxi = yi for all i, finishing the proof.

It remains to prove the claim. Fix 1 6 i0 6 n. In order to produce a contradiction, we assume
that the following property holds:

(Pi0) For all r ∈ R such that rxi = 0 for all i 6= i0, we have rxi0 = 0.

Up to reordering the xi, we may assume without loss of generality that i0 = n. Define an R-linear
map f : Mn−1 → M as follows: Let (z1, . . . , zn−1) ∈ Mn−1. By the induction hypothesis, there
exists a ∈ R such that axi = zi for all 1 6 i 6 n− 1. We then define

f(z1, . . . , zn−1) = axn.

Observe that f is well-defined: If a′ ∈ R is another element with a′xi = zi for all 1 6 i 6 n − 1,
then (a− a′)xi = 0 for all 1 6 i 6 n− 1 and hence (a− a′)xn = 0 by property (P). But this means
axn = a′xn, so f is indeed well-defined.

For each 1 6 i 6 n − 1, we define πi ∈ D = EndR(M) as the composition M ιi−→ Mn−1 f−→ M ,
where ιi is the inclusion of M into the i-th summand. For all z1, . . . , zn−1 we thus have

f(z1, . . . , zn−1) = π1 · z1 + π2 · z2 + · · ·+ πn−1 · zn−1.

In particular, we have xn = f(x1, . . . , xn−1) =
∑n−1
i=1 πixi, which contradicts the fact that the xi

are D-linearly independent. Hence, property (Pi0) is not satisfied, so we find λn ∈ R as in the
claim.

§11. Compact Representations

In this section we will generalize the results of §8. Let G be a locally profinite group. We will
study a class of smooth representations of G which behave like smooth representations of a profinite
group.

We fix a left Haar measure µG (Definition 6.2). From Theorem 11.7 on we make the assumption
that µG(ρ(g)f) = µG(f) for all g ∈ G, f ∈ C∞c (G); in this case, G is called unimodular . By
Exercise 6.5, G is unimodular if and only if the modulus character δG : G→ C× is trivial.

Example 11.1. (a) If G is compact or, more generally, if G is the union of its compact open
subgroups, then G is unimodular.

(b) We will see later (Proposition 12.18) that for any local field F , the group GLn(F ) is unimodular.
But the subgroup B of upper triangular matrices in GLn(F ) is not unimodular. (Prove this
for n = 2!)

Definition 11.2. A smooth G-representation (V, π) ∈ Rep(G) is called compact if for all v ∈ V r{0}
and all compact open subgroups K ⊆ G, the function

fK,v : G −→ V,

g 7−→ π(eK)π(g−1)v

has compact support (hence lies in C∞c (G,V )). Here, eK = vol(K)−11K ∈ H(G) is the idempotent
from Proposition 7.4. By Lemma 7.8, we may view π(eK) as the projection V →→ V K along V (K).
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Remark. If (V, π) is compact, then any subrepresentation and every quotient of V is compact.
Indeed, let W ⊆ V be a G-invariant subspace. It is trivial to see that (W,π) is compact. Since
fK,v+W (g) = fK,v(g) +W in V/W , for all g ∈ G, it follows that (V/W, π) is compact.

Although the functions fK,v are nice to work with, it is in general not easy to check whether
fK,v has compact support. We will next prove a necessary and sufficient criterion to verify when a
representation is compact.

Definition 11.3. Let (V, π) ∈ Rep(G). For all v ∈ V r {0} and ξ ∈ Ṽ r {0} we call the function

mξ,v : G −→ C,
g 7−→

〈
ξ, π(g−1)v

〉
a matrix coefficient of (V, π).

Theorem 11.4. A smooth G-representation is compact if and only if all matrix coefficients have
compact support.

Proof. Let (V, π) ∈ Rep(G). Let K ⊆ G be a compact open subgroup, and let v ∈ V , ξ ∈ Ṽ K , both
non-zero. The functions fK,v and mξ,v are constant on the cosets gK, hence they have compact
support if and only if the image of their support in G/K is finite. Also note that, since ξ|V (K) = 0
and π(eK) is the projection onto V K , we have ξ ◦ π(eK) = ξ, and hence

ξ
(
fK,v(g)

)
= ξ
(
π(eK)π(g−1)v

)
= ξ
(
π(g−1)v

)
= mξ,v(g),

for all g ∈ G. Hence, we have Suppmξ,v ⊆ Supp fK,v. This shows that, if (V, π) is compact, then
all matrix coefficients have compact support.

Conversely, assume that all matrix coefficients have compact support. Fix a compact open
subgroup K ⊆ G and let v ∈ V r {0}. It suffices to find ξ1, . . . , ξn ∈ Ṽ K such that

Supp fK,v ⊆
n⋃
i=1

Suppmξi,v. (2.16)

The image of fK,v spans a subspace Ev of V K . Let {gi}i∈I be a family in G such that the
wi := fK,v(gi) = π(eK)π(g−1

i )v form a C-basis for Ev. Choose any ξ0 ∈ (V K)∗ = Ṽ K such that
ξ0(wi) = 1 for all i ∈ I. As Suppmξ0,v/K is finite and

⊔
i∈I giK ⊆ Suppmξ0,v, it follows that I

is finite, i.e., Ev is finite dimensional. So let ξ1, . . . , ξn ∈ (V K)∗ whose restriction to Ev form a
basis for E∗v . For each g ∈ G there is some i such that mξi,v(g) = ξi(fK,v(g)) 6= 0. Thus, (2.16) is
satisfied.

Proposition 11.5. Every finitely generated compact representation is admissible. In particular,
every irreducible compact representation is admissible.

Proof. Let (V, π) be a compact G-representation generated by, say, v1, . . . , vn. Let K ⊆ G be a
compact open subgroup. Note that each fK,vi has finite image, as it has compact support and is
constant on the left cosets gK. Hence, the images of the fK,v1 , . . . , fK,vn span a finite dimensional
subspace of V K . For all v =

∑
i,j aijπ(gij)vi ∈ V K , where aij ∈ C, gij ∈ G, we compute

v = π(eK)v =
∑
i,j

aijπ(eK)π(gij)vi =
∑
i,j

aijfK,vi(g
−1
ij ).

This shows that V K is finite dimensional. Hence, V is admissible.
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Recall that G is called countable at infinity if G/K is countable for some compact open subgroup
K ⊆ G (Definition 7.10). The main reason we care about this notion is the following strong form
of Schur’s lemma:

Schur’s Lemma 11.6. Suppose G is countable at infinity. Let (V, π) ∈ Rep(G) be irreducible.
Then

EndG(V ) ∼= C.

In particular, if Z(G) denotes the center of G, there is a smooth character ωV : Z(G)→ C×, called
the central character of (V, π), such that π(z)v = ωV (z)v for all z ∈ Z(G) and v ∈ V .

Proof. Fix any v ∈ V , v 6= 0, and let K ⊆ G be a compact open subgroup with v ∈ V K . Then∑
g∈G/K Cπ(g)v is a non-zero G-invariant subspace of V of countable dimension. As V is irreducible,

it follows that dimC V is countable. Moreover, the map EndG(V )→ V , ϕ 7→ ϕ(v) is injective (since
v generates V as a G-representation), and hence EndG(V ) has countable dimension over C. By the
general version of Schur’s Lemma 10.6, EndG(V ) is a division algebra over C.

Let ϕ ∈ EndG(V ) be non-zero. Then ϕ is not nilpotent, and hence by Lemma 7.12(a), there
exists a ∈ C× such that ϕ−a idV is not left invertible. As EndG(V ) is a division algebra, we deduce
ϕ− a idV = 0.

For the existence of the central character, note that for each z ∈ Z(G) the endomorphism π(z)
lies in EndG(V ) ∼= C. Hence, there exists a unique ωV (z) ∈ C× with π(z) = ωV (z) idV . One easily
checks that ωV is a smooth character.

The main goal for this section is the following theorem:

Theorem 11.7. Suppose G is unimodular and countable at infinity. Let (W, τ) ∈ Rep(G) be an
irreducible compact representation. Each (V, π) ∈ Rep(G) admits a G-equivariant decomposition

V = V (τ)⊕ V (τ)⊥,

where V (τ) is the τ -isotypic component of V , and (W, τ) does not occur as a subquotient of V (τ)⊥.

The proof needs some preparation and will be deferred to the end of the section. We assume
that G is unimodular and countable at infinity.

Given any (V, π) ∈ Rep(G), consider the action of G×G on EndC(V ) given by(
(g, g′) · φ

)
(v) = π(g)φ

(
π(g′−1)v

)
, for all g, g′ ∈ G, v ∈ V .

We denote End∞(V ) ⊆ EndC(V ) the largest smooth G×G-invariant subspace.
Fix an irreducible compact G-representation (W, τ). We let G×G act on W ⊗C W̃ by (g, g′) ·

(w ⊗ ξ) := τ(g)w ⊗ τ̃(g′)ξ.

Lemma 11.8. The map

A : W ⊗C W̃
∼=−→ End∞(W ), (2.17)

w ⊗ ξ 7−→
[
w′ 7→ ξ(w′)w

]
is a G×G-equivariant isomorphism.
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Proof. For all g, g′ ∈ G, ξ ∈ W̃ and w,w′ ∈W , we compute

A
(
(g, g′) · (w ⊗ ξ)

)
(w′) = A

(
τ(g)w ⊗ τ̃(g′)ξ

)
(w′) =

(
τ̃(g′)ξ

)
(w′) · τ(g)w

= ξ
(
τ(g′−1)w′

)
· τ(g)w = τ(g)

(
ξ(τ(g′−1)w′)w

)
= τ(g)A

(
w ⊗ ξ

)(
τ(g′−1)w′

)
=
[
(g, g′) ·A(w ⊗ ξ)

]
(w′).

This shows that A is G×G-equivariant. It suffices to show that the induced map

AK :
(
W ⊗C W̃

)K×K −→ EndC(W )K×K

is a C-linear isomorphism for all compact open subgroups K ⊆ G. Observe that(
W ⊗C W̃

)K×K
= WK ⊗C W̃

K = WK ⊗C (WK)∗,

cf. (2.15). Let now ϕ ∈ EndC(W )K×K so that τ(k)ϕ(w) = ϕ(w) and ϕ
(
τ(k)w

)
= ϕ(w) for all k ∈ K

and w ∈ W . The first condition means ϕ(W ) ⊆ WK . The second condition means ϕ|W (K) = 0.
Since W = WK ⊕W (K) by Lemma 7.8, we conclude that

EndC(W )K×K = EndC(WK).

Under these identifications, the map AK becomes

WK ⊗C (WK)∗
∼=−→ EndC(WK),

w ⊗ ξ 7−→
[
w′ 7→ ξ(w′)w

]
,

which is an isomorphism (W is admissible by Proposition 11.5, hence WK is finite dimensional).

Lemma 11.9. Let (V, π) ∈ Rep(G). The maps

m : W ⊗C W̃ −→ H(G), and π : H(G) −→ End∞(V ),

w ⊗ ξ 7−→ mξ,w f 7−→ π(f)

are well-defined and G×G-equivariant.

Proof. Since (W, τ) is compact, Theorem 11.4 shows that the matrix coefficients mξ,w lie in H(G) =
C∞c (G). If f ∈ H(G), we find a compact open subgroup K ⊆ G with eK ∗ f = f = f ∗ eK .
Lemma 7.8 shows

π(k)π(f)π(k′) = π(k)π(eK)π(f)π(eK)π(k′) = π(eK)π(f)π(eK) = π(f)

for all k, k′ ∈ K. Hence π(f) ∈ EndC(V )K×K ⊆ End∞(V ). Hence, m and π are well-defined.
Let now g, g′, x ∈ G, w ∈W , and ξ ∈ W̃ . We compute

m
(
(g, g′)(w ⊗ ξ)

)
(x) = mτ̃(g′)ξ,τ(g)w(x) =

〈
τ̃(g′)ξ, τ(x−1)τ(g)w

〉
=
〈
ξ, τ(g′−1x−1g)w

〉
= mξ,w(g−1xg′) =

[
(g, g′)mξ,w

]
(x).

Hence, m is G×G-equivariant.
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Similarly, for any g, g′ ∈ G and v ∈ V we compute[
(g, g′)π(f)

]
(v) = π(g)π(f)

(
π(g′−1)v

)
=

∫
G

f(x)π(gxg′−1)v dµG(x)

= δG(g′−1)

∫
G

f(g−1xg′)π(x)v dµG(x) = δG(g′−1) · π
(
(g, g′)f

)
(v)

= π
(
(g, g′)f

)
(v)

where for the last equality we have used δG(g′−1) = 1, because G is unimodular. Hence, π is
G×G-equivariant.

Consider now the G×G-equivariant map

ψ := m ◦A−1 : End∞(W ) −→ H(G).

Proposition 11.10. Suppose G is unimodular and countable at infinity. Let (W, τ) ∈ Rep(G) be
an irreducible compact representation.

(a) Let (E, σ) ∈ Rep(G) be irreducible and not isomorphic to (W, τ). For each f ∈ Im(ψ) ⊆ H(G),
we have σ(f) = 0.

(b) There exists a non-zero element d(τ) ∈ C× such that τ ◦ ψ = d(τ)−1 · idEnd∞(W ).

The number d(τ) is called the formal degree of (W, τ) (it depends on µG).

Proof. We prove (a). Let v ∈ E, v 6= 0. By the definition of ψ, we have to show that the map

W ⊗C W̃ −→ E, (2.18)

w ⊗ ξ 7−→ σ
(
mξ,w

)
v

vanishes. Letting G act on the first factor of W ⊗C W̃ , we see that (2.18) is G-equivariant by
Lemma 11.9. Now, W ⊗C W̃ is τ -isotypic. As (E, σ) is not isomorphic to (W, τ), we deduce that
(2.18) is the zero map.

We prove (b). By Proposition 11.5 and Exercise 10.5 it follows that (W̃ , τ̃) is irreducible.
Lemma 11.8 and Proposition 10.8 show that End∞(W ) ∼= W ⊗C W̃ is an irreducible G × G-
representation. Now, it follows from Schur’s Lemma 11.6 that τ ◦ ψ = a · idEnd∞(W ) for some scalar
a ∈ C. We have to show a 6= 0. Let f ∈ Im(ψ) ⊆ H(G). The Separation Lemma 7.11 provides an
irreducible representation (E, σ) ∈ Rep(G) with σ(f) 6= 0. From (a) we deduce (E, σ) ∼= (W, τ),
and hence τ ◦ ψ 6= 0.

Exercise. Suppose G is profinite, and let (W, τ) ∈ Rep(G) be an irreducible representation. Show
that d(τ) = dimW

vol(G;µG) .
(Hint: First, show 〈η, w〉 · 〈ξ, v〉 = d(τ)

∫
G
〈τ̃(x)ξ, w〉 · 〈η, τ(x)v〉dµG(x) for all v, w ∈ W and

ξ, η ∈ W̃ = W ∗. For a C-basis w1, . . . , wd ∈ W with dual basis η1, . . . , ηd ∈ W ∗, compute∑d
i,j=1〈ηi, wi〉〈ηj , wj〉 in two ways.)

Proposition 11.11. Suppose G is unimodular and countable at infinity. Fix an irreducible compact
representation (W, τ) ∈ Rep(G) and let K ⊆ G be a compact open subgroup. Define

eK,τ := d(τ) · (ψ ◦ τ)(eK) ∈ H(G).
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(a) eK,τ is the unique element with τ(eK,τ ) = τ(eK) and σ(eK,τ ) = 0 for each irreducible smooth
representation (E, σ) 6∼= (W, τ).

(b) For each open subgroup H ⊆ K one has

eH,τ ∗ eK,τ = eK,τ = eK,τ ∗ eH,τ ,
eH,τ ∗ eK = eK,τ = eK ∗ eH,τ ,
eK,τ ∗ eH = eK,τ = eH ∗ eK,τ .

In particular, eK,τ is an idempotent.

(c) For each (V, π) ∈ Rep(G) and g ∈ G one has π(g)π(eK,τ ) = π(egKg−1,τ )π(g).

Proof. The uniqueness follows immediately from the Separation Lemma 7.11. Proposition 11.10
shows that eK,τ has the required properties, whence (a).

The identities in (b) follow from the Separation Lemma 7.11, Proposition 7.4, and from (a). For
example, we have τ(eH,τ ∗ eK) = τ(eH,τ )τ(eK) = τ(eH)τ(eK) = τ(eH ∗ eK) = τ(eK) = τ(eK,τ ) and
σ(eH,τ ∗ eK) = σ(eH,τ )σ(eK) = 0 = σ(eK,τ ) for all irreducible smooth (E, σ) 6∼= (W, τ).

Let us prove (c). Let H ⊆ K be an open subgroup and fix g ∈ G. Using Lemma 7.3 and the
fact that ψ ◦ τ is G×G-equivariant, we compute(

λ(g)eK,τ
)
∗ eH =

(
ρ(g−1)ρ(g)λ(g)eK,τ

)
∗ eH = δG(g−1) ·

(
ρ(g)λ(g)eK,τ

)
∗
(
λ(g)eH

)
= δG(g−1) · egKg−1,τ ∗ egH = egKg−1,τ ∗ egH .

Now, let (V, π) ∈ Rep(G) and v ∈ V . Choose an open subgroup H ⊆ K with v ∈ V H . Then

π(g)π(eK,τ )v = π
(
λ(g)eK,τ ∗ eH

)
v = π

(
egKg−1,τ ∗ egH

)
v = π(egKg−1,τ )π(g)v.

We fix a smooth representation (V, π) of G. For each v ∈ V K , we put

π(eτ )v := π(eK,τ )v.

Since π(eH,τ )v = π(eK,τ )v for all compact open subgroups H ⊆ K (Proposition 11.11(b)), this gives
a well-defined C-linear map

π(eτ ) : V → V.

We now prove Theorem 11.7 in the following stronger form:

Theorem 11.12. Suppose G is unimodular and countable at infinity. Let (W, τ) ∈ Rep(G) be an
irreducible compact representation. Let (V, π) ∈ Rep(G).

(a) The map π(eτ ) is a G-equivariant projection.

(b) Let (V ′, π′) ∈ Rep(G) and let α ∈ HomG(V, V ′). Then α ◦ π(eτ ) = π′(eτ ) ◦ α.
(c) One has a decomposition

V = Imπ(eτ )⊕Kerπ(eτ )

as G-representations, where Imπ(eτ ) is τ -isotypic, and (W, τ) does not occur as a subquotient
of Ker(eτ ).
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Proof. Parts (a) and (b) follow from Proposition 11.11(b)/(c); just note that, if v ∈ V K , g ∈ G and
α ∈ HomG(V, V ′), then π(g)v ∈ V gKg−1

and α(v) ∈ (V ′)K .
Let us prove (c). By (a), we have the decomposition V = Imπ(eτ )⊕Kerπ(eτ ). We show that

Imπ(eτ ) is τ -isotypic. Let v ∈ V be arbitrary and fix a compact open subgroup K ⊆ G with
v ∈ V K . Consider the diagram

f ∗ eK,τ H(G) ∗ eK,τ Im
(
m : W ⊗C W̃ → H(G)

)
π(f ∗ eK,τ )v V

∈ ⊆

φv

∈

Note that eK,τ = d(τ) ·(m◦A−1 ◦τ)(eK) ∈ Im(m). Letting G act only on the first factor ofW ⊗C W̃ ,
it is clear that W ⊗C W̃ is τ -isotypic. As m is G-equivariant, we deduce that Im(m) and hence also
H(G) ∗ eK,τ is τ -isotypic. As φv is G-equivariant, we deduce that Im(φv) is τ -isotypic. But then,
also Im(π(eτ )) =

∑
v∈V Im(φv) is τ -isotypic.

We now prove that (W, τ) does not occur as a subquotient of Kerπ(eτ ). Since τ(eτ ) = idW , it
suffices to show that π(eτ ) annihilates any subquotient of Kerπ(eτ ). So let (V ′′, π′′) be a subquotient
of Kerπ(eτ ). Then there exists a G-invariant subspace V ′ ⊆ Kerπ(eτ ) and surjective G-equivariant
map α : V ′ →→ V ′′. Then π′′(eτ )V ′′ = π′′(eτ )α(V ′) = α

(
π(eτ )V ′

)
= {0}.

Corollary 11.13. Every compact representation (V, π) ∈ Rep(G) is semisimple.

Proof. Let V ′ ⊆ V be the sum of all irreducible subrepresentations. By Proposition 8.1 it suffices to
prove V ′ = V . Assume for a contradiction that V/V ′ 6= 0. Let (W, τ) be an irreducible subquotient
of (V/V ′, π′′). Then π′′(eτ )(V/V ′) 6= {0} by Theorem 11.12 and hence we have π(eτ )V 6⊆ V ′.
But this contradicts the fact that π(eτ )V is τ -isotypic and in particular the sum of its irreducible
subrepresentations (each of which is isomorphic to (W, τ)).

Corollary 11.14 (Obsolete). Every irreducible compact representation (W, τ) is projective and
injective in Rep(G).

Proof. Note that the functor Rep(G)→ Rep(G), (V, π) 7→ π(eτ )V is exact. Since (W, τ) is projective
in the category of compact representations by Corollary 11.13, it follows that the functor

Rep(G) −→ VectC,

(V, π) 7−→ HomG

(
W,π(eτ )V

)
= HomG(W,V )

is exact. Hence (W, τ) is projective in Rep(G). A similar argument shows that (W, τ) is injective in
Rep(G).





Chapter 3

Smooth Representations of p-Adic Groups

Throughout this chapter, we fix a local field F with valuation ring oF , maximal ideal mF , residue
field κF , and uniformizer $. Recall the associated discrete valuation

valF : F −→→ Z ∪ {∞},

which is given by valF (x) = sup {n ∈ Z |x ∈ $noF }.

§12. Decompositions of GLn(F )

Recall the group GLn(F ) of invertible n× n-matrices. We have seen in Example 4.4 that GLn(F )
is locally profinite, that GLn(oF ) ⊆ GLn(F ) is a compact open subgroup, and that the congruence
subgroups

Km := 1 +$m Matn,n(oF ), for m > 1,

form a system of fundamental open subgroups of GLn(F ), which are normal in GLn(oF ). In this
section, we will study in detail the structure of GLn(F ). We start with describing the maximal
compact subgroups of GLn(F ).

Definition 12.1. A lattice in Fn is a finitely generated oF -submodule L ⊆ Fn which generates Fn
as an F -vector space.

Lemma 12.2. Let L ⊆ Fn be a lattice. Then there exists an F -basis x1, . . . , xn ∈ F such that
L =

⊕n
i=1 oF .xi. (In particular, L is a free oF -module of rank n.)

Proof. Let y1, . . . , ym be a minimal generating system of L as an oF -module. We claim this is
an F -basis of Fn. Obviously, it generates Fn as a vector space. It is also linearly independent:
Let

∑m
i=1 aiyi = 0 with ai ∈ F , not all of them zero. Fix j with valF (aj) 6 valF (ai) for all i.

Then valF (a−1
j ai) > 0 for all i, and hence yj = −

∑
i 6=j a

−1
j aiyi is an oF -linear combination, which

contradicts the fact that y1, . . . , ym is a minimal set of generators of L.

Proposition 12.3. GLn(oF ) is a maximal compact (open) subgroup of GLn(F ). Every compact
subgroup of GLn(F ) is conjugate to a subgroup of GLn(oF ).

49
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Proof. We first show that GLn(oF ) is maximal. Let H ⊆ GLn(F ) be a subgroup strictly containing
GLn(oF ). Take A = (aij)i,j ∈ H rGLn(oF ). Replacing A with A−1 if necessary, we find i0, j0 such
that valF (ai0j0) is negative and minimal among all valF (aij). Multiplying A with suitable matrices
in GLn(oF ), we may assume that i0 = 1 = j0 and a1i = 0 for all i > 1. Then ar11 is the (1, 1)-entry
of Ar ∈ H. It follows that H =

⋃
r>0$

−r Matn,n(oF )∩H does not admit a finite subcover. Hence,
H is not compact.

Let H ⊆ GLn(F ) be a compact subgroup. Let e1, . . . , en be the standard basis of Fn and
put L =

⊕n
i=1 oF .ei. Denote LH the smallest H-invariant oF -module containing L. Then LH is

generated as an oF -module by the image C of the continuous map

{1, 2, . . . , n} ×H −→ Fn,

(i, h) 7−→ h(ei).

As {1, 2, . . . , n} × H is compact, it follows that C is compact. As Fn =
⋃
m∈Z>0

$−mL is an
open covering, there exists m ∈ Z such that C ⊆ $−mL. We deduce that LH ⊆ $−mL is finitely
generated, because oF is Noetherian. We have shown that LH is an H-invariant lattice. By
Lemma 12.2, there exists an F -basis x1, . . . , xn in Fn with LH =

⊕n
i=1 oF .xi. Let g : Fn → Fn

be the F -linear automorphism such that g(xi) = ei viewed as an n × n-matrix with respect to
e1, . . . , en. Then gHg−1 stabilizes L =

⊕n
i=1 oF .ei and is therefore contained in GLn(oF ).

We now put G := GLn(F ) and K := GLn(oF ).

Notation. – Denote Σn the symmetric group on n elements. For each σ ∈ Σn we denote

wσ :=
(
δi,σ(j)

)
i,j
∈ K

the permutation matrix associated with σ; it is characterized by wσei = eσ(i). Here, δij is the
Kronecker-delta, defined by δij := 1 if i = j and δij := 0 if i 6= j.

– Put

Λ := {diag($m1 , . . . , $mn) |m1, . . . ,mn ∈ Z} ∼= Zn,
Λ+(G) := Λ+ := {diag($m1 , . . . , $mn) ∈ Λ |m1 > m2 > · · · > mn} .

Theorem 12.4 (Cartan decomposition). One has a disjoint decomposition

G =
⊔
λ∈Λ+

KλK,

that is, Λ+ is a complete set of representatives of the double coset space K\G/K.

Proof. Let A = (aij)i,j ∈ G. Fix i0, j0 such that valF (ai0j0) = min {valF (aij) | 1 6 i, j 6 n}. Re-
placing A by w(n i0)Aw(n j0) if necessary, we may assume that i0 = j0 = n. Write ann = x$mn , for
x ∈ o×F . Then B := diag(1, . . . , 1, x−1) ∈ K and hence, replacing A with AB if necessary, we may
assume ann = $mn . Now note that

− a1n
ann

−an−1,n

ann

0 0 1

En−1




a1n

an−1,n

an1 an,n−1 ann

∗



0

0
− an1

ann
−an,n−1

ann
1

En−1

 =


0

0
0 0 $mn

A′





§12. Decompositions of GLn(F ) 51

lies in KAK and every entry of A′ has valuation > mn. By induction, we see that KAK contains
a matrix of the form diag($m1 , . . . , $mn) with m1 > m2 > · · · > mn.

It remains to see that the union in the assertion is disjoint. Let m1, . . . ,mn,m
′
1, . . . ,m

′
n ∈ Z

such that

K

$m1

$mn

K = K

$m′1

$m′n

K
It suffices to find σ ∈ Σn with mi = m′σ(i) for all 1 6 i 6 n. Let A = (aij)i,j ∈ K such that

X :=

$m1

$mn

A
$−m′1

$−m
′
n

 ∈ K.
We have 0 = valF (det(X)) =

∑n
i=1mi + valF (det(A)) −

∑n
i=1m

′
i =

∑n
i=1mi −

∑n
i=1m

′
i. Recall

the Leibniz formula
det(A) =

∑
σ∈Σn

sgn(σ) · a1σ(1) · · · anσ(n) ∈ o×F .

As A ∈ K, we find σ ∈ Σn with aiσ(i) ∈ o×F for all i. Since X = (xij)i,j ∈ K, we have
$mi−m′σ(i)aiσ(i) = xiσ(i) ∈ oF , which shows mi −m′σ(i) > 0, for all i. Now,

∑n
i=1(mi −m′σ(i)) =∑n

i=1mi −
∑n
i=1m

′
σ(i) = 0, so we conclude mi = m′σ(i) for all i. This finishes the proof.

Exercise (Elementary divisor theorem for oF ). Let L1,L2 be two oF -lattices in Fn. Show that there
is an oF -basis e1, . . . , en of L1 and uniquely determined integers m1 > m2 > · · · > mn such that
πm1e1, . . . , π

mnen is an oF -basis of L2.

Corollary 12.5. Let H ⊆ G = GLn(F ) be a closed subgroup. Then H is countable at infinity.
Moreover, the center Z(H) acts through a character on every irreducible smooth H-representation.

Proof. Since H/H ∩K ⊆ G/K, it suffices to show that G is countable at infinity. By the Cartan
decomposition 12.4, we have G =

⊔
λ∈Λ+ KλK ⊆

⋃
λ∈Λ+

⋃
k∈K/(λKλ−1∩K) kλK. As Λ+ is countable

and each K/(λKλ−1 ∩K) is finite (since K is compact), it follows that G/K is countable. The last
assertion is now a consequence of Schur’s Lemma 11.6.

We now consider the subgroups

B :=

∗ ∗

0 ∗

, T :=

∗ 0

0 ∗

, U :=

1 ∗ ∗
∗

0 1


of G = GLn(F ). Note that U is a normal subgroup of B, and B = TU = UT . Put

W := {wσ |σ ∈ Σn} ∼= Σn.

Definition 12.6. We call

– B the standard Borel subgroup of G;

– T the standard maximal torus of G;
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– U the unipotent radical of B and
– W the Weyl group of G (with respect to T ).

Theorem 12.7 (Iwasawa decomposition). We have G = KB = BK. In particular, G/B is
compact.

Proof. Let A = (aij)i,j ∈ G. We need to find k ∈ K such that kA ∈ B. Since W ⊆ K, we find
σ ∈ Σn such that valF (aσ(1),1) 6 valF (ai1) for all i. Replacing A with wσ−1A, we may assume
valF (a11) 6 valF (ai1) for all i. As before, we have

1 0 0
−a21a11

−an1

a11

En−1

 ·A =


a11 a12 a1n

0

0
A′

 ∈ KA.
By induction on n, we find k ∈ K with kA ∈ B, which proves G = KB. Now, G = G−1 =
(KB)−1 = B−1K−1 = BK.

Finally, note that we have a continuous surjection K →→ G/B. As K is compact, so is G/B.

Lemma 12.8. Let NG(T ) :=
{
g ∈ G

∣∣ gTg−1 = T
}
be the normalizer of T in G. Then NG(T )/T ∼=

W.

Proof. We need to show NG(T ) = TW = WT . It is clear that W normalizes T . Conversely, let
a = (aij)i,j ∈ NG(T ). Assume for a contradiction that there exists 1 6 i 6 n and j1 6= j2 such
that ai,j1 6= 0 6= ai,j2 . Choose t = diag(t1, . . . , tn) ∈ T with tj1 6= tj2 . By assumption, there exists
t′ = diag(t′1, . . . , t

′
n) ∈ T with at = t′a. We compute

ai,j1tj1 = (at)i,j1 = (t′a)i,j1 = t′iai,j1 =
ai,j1
ai,j2

· t′iai,j2

=
ai,j1
ai,j2

· ai,j2tj2 = ai,j1tj2 .

Since ai,j1 6= 0, this means tj1 = tj2 which contradicts tj1 6= tj2 . Hence a ∈ WT .

Theorem 12.9 (Bruhat decomposition). One has a disjoint decomposition

G =
⊔
w∈W

BwB.

Moreover, BwB = UwB = BwU for all w ∈ W.

Proof. Note that U is generated by the elementary matrices eij(x) for 1 6 i < j 6 n and x ∈ F ,
given by

(
eij(x)

)
r,s

:=


1, if r = s,
x, if (r, s) = (i, j),
0, otherwise.

Now verify that any element of G can be transformed into an element of TW by multiplying
with elementary matrices from the left and right. Since each w ∈ W normalizes T , and since
B = TU = UT , we have BwB = UwB = BwU .



§12. Decompositions of GLn(F ) 53

It remains to prove BwσB 6= BwτB whenever σ 6= τ in Σn. Assume otherwise, and let u ∈ U
such that wσuw−1

τ ∈ B. Fix i such that σ(i) > τ(i). The (σ(i), τ(i))-th entry of wσuw−1
τ then

equals uii = 1, which contradicts the fact that wσuw−1
τ ∈ B.

Definition 12.10. A partition of n ∈ Z>1 is a tuple n = (n1, n2, . . . , nr), where n1, . . . , nr ∈ Z>1

such that n1 + · · ·+ nr = n. If n′ = (n′1, . . . , n
′
s) is another partition of n, we write n 6 n′ if there

are integers 0 = r0 < r1 < r2 < · · · < rs = r such that n′i =
∑ri
j=ri−1+1 nj for 1 6 i 6 s. This

defines a partial order on the set of all partitions of n. For example, we have

(1, 2, 3, 4) 6 (3, 3, 4) 6 (3, 7) 6 (10)

as partitions of 10.

Let n = (n1, . . . , nr) be a partition of n. The subgroup Pn of G consisting of matrices of the
form 

n1 A11 A12 A1r

n2 0
Ar−1,r

nr 0 0 Arr

,
where Aii ∈ GLni(F ) for all 1 6 i 6 r, and Aij ∈ Matni,nj (F ) for all 1 6 i < j 6 r, is called a
standard parabolic subgroup of shape n.

The subgroup Un of Pn consisting of the matrices of the form
n1 En1

A12 A1r

n2 0
Ar−1,r

nr 0 0 Enr

,
where Eni ∈ GLni(F ) denotes the identity matrix, is called the unipotent radical of Pn.

The subgroup Mn of Pn consisting of the block diagonal matrices
n1 A11 0 0
n2 0

0
nr 0 0 Arr

,
where Aii ∈ GLni(F ) for all 1 6 i 6 r, is called the standard Levi subgroup of Pn.

We denote by Pn and Un the transpose of Pn and Un, respectively. We call Pn the opposite
parabolic of Pn.

A subgroup P of G is called parabolic if there exists g ∈ G such that gPg−1 is standard parabolic.
Similarly, a subgroup M of G is called a Levi subgroup if there exists g ∈ G such that gMg−1 is a
standard Levi subgroup.

We observe the following easy facts:

– Mn
∼= GLn1

(F )× · · · ×GLnr (F ).

– Un is a normal subgroup in Pn and Pn = MnUn = UnMn and Mn ∩ Un = {1}.
– B ⊆ Pn, T ⊆Mn are subgroups, and Un ⊆ U is a normal subgroup.
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– More generally, if n 6 n′, then Pn ⊆ Pn′ , Mn ⊆Mn′ and Un ⊇ Un′ . In this case, we have

Pn ∩Mn′ = Mn · (Un ∩Mn′).

We call Pn ∩Mn′ a standard parabolic subgroup of Mn′ with standard Levi subgroup Mn and
unipotent radical Un ∩Mn′ .

– Pn = MnUn = UnMn.

– Pn ∩ Pn = Mn.

Example 12.11. (a) P(1,...,1) = B, U(1,...,1) = U , and M(1,...,1) = T . Further, P (1,...,1) consists
of the lower triangular matrices in G.

(b) P(n) = M(n) = G and U(n) = {1}.

Exercise 12.12. (a) Let g ∈ G such that gTg−1 ⊆ B. Show that gTg−1 = bTb−1 for some
b ∈ B. (Hint: Let t := diag(t1, . . . , tn) ∈ T such that ti 6= tj for i 6= j. Show T = ZG(t) :=
{x ∈ G |xt = tx}. Deduce that it suffices to find b ∈ B with gtg−1 ∈ bTb−1. Next, show that
gtg−1 stabilizes the subspaces Vi := Fe1 + · · ·+ Fei ⊆ Fn, for all 1 6 i 6 n (where e1, . . . , en
denotes the standard basis of Fn). Show that there exists a permutation σ ∈ Σn such that
Vi = Fgeσ(1) ⊕ · · · ⊕ Fgeσ(i) is the eigenspace decomposition for gtg−1. Deduce gwσ ∈ B and
conclude.)

(b) Show that the set
{
gBg−1

∣∣ g ∈ G and gBg−1 ⊇ T
}
is in bijection with W (and in particular

finite). (Hint: (a) and Lemma 12.8.)

(c) Let M ⊆ G be a standard Levi subgroup. Let P(M) be the set of parabolic subgroups of G
with Levi subgroup M . Show that P(M) is finite.

(d) Let M ⊆ G be a standard Levi subgroup and put W(M) := NG(M)/M , where NG(M) ={
g ∈ G

∣∣ gMg−1 = M
}
is the normalizer of M in G. Show that the group homomorphism

NG(M)∩W →W(M) is surjective (what is the kernel?). In particular, W(M) is finite. (Hint:
Let g ∈ NG(M) so that gTg−1 ⊆M . Using the strategy in (a), show that there exists m ∈M
such that mgT (mg)−1 = T .)

We fix a partition n = (n1, . . . , nr) of n.

Lemma 12.13. The multiplication map

Un ×Mn × Un −→ G

is injective (but not a group homomorphism).

Proof. Take u1, u2 ∈ Un, m1,m2 ∈Mn, and u1, u2 ∈ Un such that

u1m1u1 = u2m2u2.

Then u−1
2 u1 = (m2u2u

−1
1 m−1

2 ) · (m2m
−1
1 ) ∈ Un ∩ Pn = {1}. We deduce u1 = u2. Since Mn ∩ Un =

{1}, we further deduce m1 = m2 and m2u2u
−1
1 m−1

2 = 1. The latter is equivalent to u1 = u2.

Notation 12.14. (a) If n′ = (n′1, . . . , n
′
s) is a partition of n, we define

Λ++(Mn′) :=
{

diag($m1En′1 , . . . , $
msEn′s) ∈ Λ+ ∩ Z(Mn′)

∣∣m1 > m2 > · · · > ms

}
.
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(b) More generally, let n′ = (n′1, . . . , n
′
s) 6 n = (n1, . . . , nr) be partitions of n. We may identify

n′ with a tuple (n′1, . . . , n
′
r), where each n′i is a partition of ni. We define

Λ++(Mn′ ,Mn) =
{

diag(λ1, . . . , λr)
∣∣λi ∈ Λ++(Mn′i

) for all 1 6 i 6 r
}
.

For example, we have 
$2

$2

$3

$

 ∈ Λ++
(
M(2,1,1),M(2,2)

)
.

Proposition 12.15. Let Km = 1 +$m Matn,n(oF ) be the m-th congruence subgroup, where m > 1.
Let n = (n1, . . . , nr) be a partition of n. Put K+

m = Km∩Un, K0
m = Km∩Mn, and K−m = Km∩Un.

(a) Km = K+
mK

0
mK

−
m = K−mK

0
mK

+
m;

(b) For all λ ∈ Λ+ we have λK+
mλ
−1 ⊆ K+

m and λK−mλ−1 ⊇ K−m;
(c) Let n′ = (n′1, . . . , n

′
s) 6 n be a partition of n and let

λ ∈ Λ++(Mn′).

Then
⋂
i λ

iK+
mλ
−i = {1} =

⋂
i λ
−iK−mλ

i as well as
⋃
i λ
−iK+

mλ
i = Un and

⋃
i λ

iK−mλ
−i = Un.

Proof. We first prove (b) and (c) for K+
m; the result for K−m is obtained by passing to transpose

matrices. Let λ = diag($m1 , . . . , $mn) ∈ Λ+ and A = En + (aij)16i<j6n ∈ K+
m. We compute

λAλ−1 = En + ($mi−mjaij)i<j ∈ En +$m Matn,n(oF ).

This implies (b).
Let now λ = diag($m1En′1 , . . . , $

msEn′s) ∈ Λ++(Mn′). Let A = En + (Aij)16i<j6s ∈ K+
m,

where Aij ∈ $m Matn′i,n′j (oF ) (this is possible, because n′ 6 n). For all l ∈ Z we compute

λlAλ−l = En +
(
$l(mi−mj)Aij

)
i<j
∈ En +$m+l Matn,n(oF ).

Then
⋂
l>0 λ

lK+
mλ
−l ⊆

⋂
l>0Km+l = {1}. It remains to show that each element A = En +

(Aij)16i<j6s of Un lies in some λ−lK+
mλ

l. We find k ∈ Z such that Aij ∈ $k Matn′i,n′j (oF ) for all
i < j. Then λm−kAλ−(m−k) ∈ Km ∩ Un = K+

m, which proves (c).
We now prove (a). Let A = (Aij)16i,j6r ∈ Km with Aij ∈ $m Matni,nj (oF ) for i 6= j and

Aii ∈ Eni +$m Matni,ni(oF ) for all i. We compute
En1

0 0

−A21A
−1
11 En2

−Ar1A−1
11 Enr



A11 A12 A1r

A21

Ar1
∗



En1

−A−1
11 A12 −A−1

11 A1r

0 En2

0 Enr



=


A11 0 0
0

0
A′

 ∈ K−mAK+
m.

Proceeding by induction, we find A ∈ K−mK0
mK

+
m. Hence, Km = K−mK

0
mK

+
m. Passing to the inverses

also shows Km = K+
mK

0
mK

−
m.
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Remark 12.16. Proposition 12.15(b) shows that U = U(1,...,1) is the union of its compact open
subgroups. By Exercise 6.5, the modulus character of U (and any of its closed subgroups) is trivial.

Definition 12.17. Let n = (n1, . . . , nr) be a partition of n. Let M = Mn
∼=
∏r
s=1 GLns(F ) be the

corresponding Levi subgroup of G. Let detn :
∏
s GLns(F )

∏
s det

−−−−→
∏
s F
×. We put

M0 := det−1
n

(∏
s

o×F

)
=

r∏
s=1

GLns(F )0, where GLns(F )0 = det−1(o×F ).

Let Z(M) ∼=
∏r
s=1 F

× be the center of M . We make the following easy observations:

– Every compact subgroup H of M is contained in M0, because detn(H) is a compact subgroup
of
∏
s F
× ∼=

∏
s($

Z × o×F ) and hence contained in
∏
s o
×
F .

– M0 is a normal subgroup of M , and M/M0 ∼=
∏
s F
×/o×F

∼= Zr and M/Z(M)M0 ∼=∏r
s=1 Z/nsZ (for the latter it suffices to observe det(Z(GLns(F )) GLns(F )0) = (F×)nso×F =

$nsZ × o×F for all s).

Proposition 12.18. Let M be a Levi subgroup of G.

(a) The subgroup SLn(F ) := det−1({1}) ⊆ GLn(F ) is generated as a group by U and U .

(b) M0 is generated by all compact subgroups of M .

(c) M0 and M are unimodular.

Proof. By Gauß’ algorithm, it is clear that SLn(F ) is generated by U , U , and T ′ := T ∩ SLn(F ).
Note that for each t = diag(t1, t2, . . . , tn) ∈ T ′ we have

t =

n−1∏
i=1

diag
(
1, . . . , 1,

i
↓
si, s

−1
i , 1, . . . , 1

)
,

where si = t1 · · · ti for all i = 1, . . . , n− 1. We are therefore reduced to the case n = 2 and have to

show that
(
t 0
0 t−1

)
lies in the group generated by U and U . For t = 1 this is trivial, and for t 6= 1

we have (
t 0
0 t−1

)
=

(
1 0
t−1 1

)(
1 1− t
0 1

)(
1 0
−1 1

)(
1 1− t−1

0 1

)
.

This proves (a). Since every element of U and U is contained in a compact subgroup (Remark 12.16),
part (b) follows from (a) and the fact that M0 =

∏r
i=1 GLni(oF ) SLni(F ).

Let δM : M → R×>0 be the modulus character of M . Since M0 is generated by its compact
subgroups, we have δM (M0) = {1}. It is clear that δM (Z(M)) = {1}. Hence δM factors through
a character

∏r
i=1 Z/niZ ∼= M/Z(M)M0 → R×>0, which is trivial since R×>0 contains no non-trivial

finite subgroups. Hence δM ≡ 1.

Exercise. Let (V, π) ∈ Rep(GLn(F )) be a finite dimensional irreducible smooth representation.
Show that π = χ ◦ det, where χ : F× → C× is a smooth character. (Hint: Use Proposition 12.15 to
show that U and U act trivially on V .)
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§13. The structure of H(G,Km)

From now on, we assume G = Mn ⊆ GLn(F ) for some partition n = (n1, . . . , nr) of n. Put
K = GLn(oF ) ∩G.

Our next goal will be to show that every irreducible smooth representation of G is admissible.
Since the m-th congruence subgroups Km = (En +$m Matn,n(oF )) ∩G form a fundamental basis
of open compact subgroups, it suffices to show that for every irreducible (V, π) ∈ Rep(G) the space
V Km is finite dimensional, for all m ∈ Z>1. By Theorem 7.9 we have to show that for all m ∈ Z>1

the simple H(G,Km)-modules have finite dimension over C. We thus need to study the structure
of H(G,Km).

We fix a left Haar measure µG on G.

Lemma 13.1. For g ∈ G we put

cg := eKmgKm = vol(KmgKm;µG)−1 · 1KmgKm .

The set {cg}g∈Km\G/Km is a C-basis of H(G,Km). Moreover, if KmgKmg
′Km = Kmgg

′Km, then
cg ∗ cg′ = cgg′ .

Proof. The first assertion is clear from Proposition 7.4. Assume now that KmgKmg
′Km =

Kmgg
′Km. Let h ∈ G. The map x 7→ 1KmgKm(x) · 1Kmg′Km(x−1h) is the characteristic func-

tion 1KmgKm∩hKmg′−1Km ; it is non-zero precisely when h ∈ KmgKmg
′Km. Hence, we have

(1KmgKm ∗ 1Kmg′Km)(h) = vol
(
KmgKm ∩ hKmg

′−1Km

)
.

Write KmgKm =
⊔dg
i=1 giKm and Kmg

′Km =
⊔dg′
j=1 g

′
jKm, where dg vol(Km) = vol(KmgKm) and

dg′ vol(Km) = vol(Kmg
′Km) because µG is left invariant. Observe hKmg

′−1Km =
⊔dg′
j=1 hKmg

′−1
j .

By counting the left cosets in KmgKm ∩ hKmg
′−1Km, we compute

vol
(
KmgKm ∩ hKmg

′−1Km

)
· vol(KmhKm)

= #
{
i
∣∣ gi ∈ hKmg

′−1
j for some j

}
· vol(KmhKm) vol(Km)

= #
{

(i, j)
∣∣ gig′j ∈ hKm

}
· vol(KmhKm) vol(Km)

= #
{

(i, j)
∣∣ gig′j ∈ KmhKm

}
· vol(Km)2

= dgdg′ · vol(Km)2

= vol(KmgKm) · vol(Kmg
′Km).

Here, the third equality uses the fact that vol
(
KmgKm ∩hKmg

′−1Km

)
only depends on the double

coset KmhKm, and the fourth equality uses KmgKmg
′Km = Kmgg

′Km. Finally, we have

(cg ∗ cg′)(h) =
vol(KmgKm ∩ hKmg

′−1Km)

vol(KmgKm) vol(Kmg′Km)

=
1

vol(KmhKm)
· 1Kmgg′Km(h) = cgg′(h)

for all h ∈ G.
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Recall that Km is a normal subgroup of K. Hence H(K,Km) is a subalgebra of H(G,Km) of
dimension [K : Km].

Theorem 13.2. Put C := 〈cλ | λ ∈ Λ+(G)〉 ⊆ H(G,Km), where Λ+(G) :=
∏r
i=1 Λ+(GLni(F )).

Then:

(a) H(G,Km) = H(K,Km)CH(K,Km).

(b) C is a commutative, finitely generated algebra. In fact, we have

cλλ′ = cλ ∗ cλ′ for all λ, λ′ ∈ Λ+. (3.1)

Proof. Let g ∈ G. By the Cartan decomposition 12.4 applied to each factor of G, we find k, k′ ∈ K
and λ ∈ Λ+(G) with g = kλk′. We have

KmkλKm = KmkKmλKm and Kmkλk
′Km = KmkλKmk

′Km,

because Km ⊆ K is normal. By Lemma 13.1, we have

ck ∗ cλ ∗ ck′ = ckλ ∗ ck′ = ckλk′ = cg.

This proves (a). We now prove (b). Note that each Λ+(GLns(F )) is generated as a commutative
monoid by the elements

λs,i := diag($, . . . ,$︸ ︷︷ ︸
i times

, 1, . . . , 1) ∈ GLns(F ) ⊆ GLn(F ), (3.2)

for 1 6 i 6 ns, and λ−1
s,ns . To finish the proof, it remains to show (3.1). Again by Lemma 13.1 it

suffices to show
KmλKmλ

′Km = Kmλλ
′Km. (3.3)

Applying Proposition 12.15 for n = (1, . . . , 1) to each factor of G, we have

λKmλ
′ = λK+

mK
0
mK

−
mλ
′ = (λK+

mλ
−1) · λK0

mλ
′ · (λ′−1K−mλ

′) ⊆ Kmλλ
′Km.

(Note that K0
m ⊆ T and λ, λ′ ∈ T , and T is commutative.) We deduce “⊆” in (3.3). The other

inclusion is trivial.

Fix λ ∈ Λ+(G). For each (V, π) ∈ Rep(G) we are going to describe the kernel of the maps

π(cλl) : V Km −→ V Km , for l ∈ Z>0.

Let n′ 6 n be the unique partition for which λ ∈ Λ++(Mn′ , G) (see Notation 12.14). Put N :=
Un′ ∩G. Recall the Jacquet functor from Exercise 9.4(b): It is the functor

JN : Rep(Pn′ ∩G) −→ Rep(Mn′),

(W,σ) 7−→ (WN , JN (σ)),

where we set WN := W/W (N) and W (N) = 〈w − σ(x)w | x ∈ N,w ∈W 〉.
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Proposition 13.3. Let (V, π) ∈ Rep(G). Then⋃
l>0

Kerπ(cλl) ∩ V Km = V (N) ∩ V Km .

Proof. By Proposition 12.15(c) (applied with n′), we have N =
⋃
l>0Nl, where each Nl := λ−lK+

mλ
l

is a compact open subgroup of N . Note that V (N) =
⋃
l>0 V (Nl). By Lemma 7.8 we have

V (Nl) = Kerπ|N (eNl). Hence, given any v ∈ V Km , we have to show

π(cλl)v = 0 ⇐⇒ π|N (eNl)v = 0. (3.4)

Write λ−lK+
mλ

l =
⊔d
i=1 uiK

+
m. By Proposition 12.15 we have Km = K+

mK
0
mK

−
m and λ−lK0

mK
−
mλ

l ⊆
Km. Now, observe that

Kmλ
lKm = λl · λ−lKmλ

lKm = λl · λ−lK+
mλ

lKm =

d⊔
i=1

λluiKm

is a disjoint union (if ui ∈ ujKm, then u−1
j ui ∈ Km ∩N = K+

m, hence ui = uj). We now compute

π(cλl)v =
1

d

d∑
i=1

π(λlui)v =
1

d
· π(λl)

d∑
i=1

π(ui)v

= π(λl)π|N (eNl)v.

As π(λl) is an isomorphism, this shows (3.4), which finishes the proof.

The last result suggests that we should look at the Jacquet functor JN in more detail.

§14. Parabolic Induction and Parabolic Restriction

Recall G = Mn for some partition n = (n1, . . . , nr) of n. We fix a standard parabolic subgroup
P = MN with Levi subgroup M and unipotent radical N , corresponding to some partition n′ 6 n.
(This means P = Pn′ ∩ G, M = Mn′ ∩ G and N = Un′ ∩ G.) Recall the modulus character
δP : P → R×>0, which is given as follows: Choose any compact open subgroup H ⊆ P ; then
δP (g) = [gHg−1 : H] (generalized index) for each g ∈ P . See Exercise 6.5. As R>0 admits unique
square roots, the character

δ
1/2
P : P −→ R×>0,

g 7−→
√
δP (g)

is well-defined. We denote δ−1/2
P the inverse of δ1/2

P .

Lemma 14.1. One has (δP )|N ≡ 1. For all m ∈M one has

δP (m) = [mKNm
−1 : KN ], where KN = K1 ∩N .
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Proof. By Proposition 12.15, every u ∈ N is contained in a compact subgroup of P . Hence, by
Exercise 6.5 we have δP (u) = 1.

In order to prove the last assertion, we use the following general

Fact. Let P be a topological group, and let N,M ⊆ P be closed subgroups such that N E P is
normal and the composite M ↪→ P →→ P/N is an isomorphism. Let H ′ ⊆ H ⊆ P be compact open
subgroups. Put HM := H ∩M and HN := H ∩ N , and similarly for H ′M and H ′N . Suppose that
H = HMHN and H ′ = H ′MH

′
N . Then

[H : H ′] = [HM : H ′M ] · [HN : H ′N ].

Proof of the Fact. Write HM =
⊔dM
i=1miH

′
M and HN =

⊔dN
j=1 ujH

′
N , so that dM = [HM : H ′M ] and

dN = [HN : H ′N ]. The claim amounts to showing that we have a disjoint union

H =

dM⊔
i=1

dN⊔
j=1

miujH
′. (3.5)

Note that H ′M normalizes HN and H ′N . Hence

H = HMHN =
⋃
i

miH
′
MHN =

⋃
i

miHNH
′
M =

⋃
i,j

miujH
′
NH

′
M =

⋃
i,j

miujH
′.

It remains to prove that (3.5) is disjoint. Suppose miujH
′ = mi′uj′H

′. Fix h′ ∈ H ′ with miuj =
mi′uj′h

′, and write h′ = h′Mh
′
N with h′M ∈ H ′M and h′N ∈ H ′N . Then

mi · uj = mi′uj′h
′
Mh
′
N = (mi′h

′
M ) ·

(
h′Muj′h

′−1
M h′N

)
, in HMHN .

Since M ∩ N = {1}, we have mi = mi′h
′
M and uj = h′Muj′h

′−1
M h′N . But by assumption, we have

i = i′ and h′M = 1, and from the resulting equality uj = uj′h
′
N we deduce j = j′. Hence, the union

in (3.5) is indeed disjoint.

Write KP = K1 ∩ P and KM = K1 ∩ M . Then KP = KMKN , and for each m ∈ M we
have mKPm

−1 = (mKMm
−1) · (mKNm

−1) and K ′P := KP ∩ mKPm
−1 = K ′M · K ′N , where

K ′M := KM ∩mKMm
−1 and K ′N := KN ∩mKNm

−1. Note that M ∼= GLn′1(F )× · · · ×GLn′
r′

(F )
is unimodular by Proposition 12.18. We now compute

δP (m) =
[mKPm

−1 : K ′P ]

[KP : K ′P ]
=

[mKMm
−1 : K ′M ] · [mKNm

−1 : K ′N ]

[KM : K ′M ] · [KN : K ′N ]

= δM (m) · [mKNm
−1 : KN ] = [mKNm

−1 : KN ].

Definition 14.2. (a) For (W,σ) ∈ Rep(M), the representation

iGP (W,σ) := IndGP
(
W, δ

1/2
P ⊗ InfMP σ

)
=

f : G→W

∣∣∣∣∣∣
∃H ⊆ G compact open such that
f(gh) = f(g) for all g ∈ G, h ∈ H, and
f(xg) = δ

1/2
P (x)σ(x)f(g) for all g ∈ G, x ∈ P


is smooth, where G acts on f ∈ iGP (W,σ) by right translation: (gf)(g′) = f(g′g) for all
g, g′ ∈ G. We call iGP (W,σ) the representation parabolically induced from (W,σ).
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(b) For (V, π) ∈ Rep(G), the M -representation

rGP (V, π) :=
(
VN , JN (δ

−1/2
P ⊗ π|P )

)
is smooth. (See also Exercise 9.4). We call rGP (V, π) the representation parabolically restricted
from (V, π).

The parabolic induction functor iGP : Rep(M) → Rep(G) allows us to construct new smooth
G-representations from smooth representations of the “smaller” group M . This breaks up the
classification of irreducible smooth representations into two steps:

(i) Classify the irreducible smooth representations arising as a subquotient of iGP (W,σ) for some
parabolic subgroup P = MN of G and some (W,σ) ∈ Rep(M).

(ii) Classify the irreducible smooth representations which are not a subquotient of a parabolically
induced representation.

The representations falling into case (ii), called supercuspidal , are to be thought of as the “building
blocks” of smooth representations in the sense that knowledge of the supercuspidal representations (of
all Levi subgroups of G) and of the parabolic induction functors provides a complete understanding
of all irreducible smooth representations.

The following properties of iGP and rGP will be essential in the following:

Theorem 14.3. Let P = MN be a standard parabolic subgroup of G corresponding to a partition
n′ 6 n. Let (V, π) ∈ Rep(G) and (W,σ) ∈ Rep(M).

(a) There is a natural C-linear isomorphism

HomM

(
rGP (V, π), (W,σ)

) ∼= HomG

(
(V, π), iGP (W,σ)

)
.

In other words: rGP is left adjoint to iGP .

(b) The functors iGP and rGP are exact.

(c) If (V, π) ∈ Rep(G) is finitely generated, then rGP (V, π) ∈ Rep(M) is finitely generated.

(d) If (W,σ) is admissible, then iGP (W,σ) is admissible.

(e) iGP and rGP are transitive. More concretely, let n′ 6 n′′ 6 n be another partition. Put
Q = Pn′′ ∩G and L = Mn′′ so that Q ⊇ P and L ⊇M . Then there are natural isomorphisms

iGP (W,σ) ∼= iGQ iLP∩L(W,σ) and rGP (V, π) ∼= rLP∩L rGQ(V, π).

Proof. For (a) we compute

HomM

(
rGP π, σ

)
= HomM

(
JN (δ

−1/2
P ⊗ π|P ), σ

)
∼= HomP

(
δ
−1/2
P ⊗ π|P , InfMP σ

)
(Exercise 9.4(b))

= HomP

(
π|P , δ

1/2
P ⊗ InfMP σ

)
∼= HomG

(
π, IndGP (δ

1/2
P ⊗ InfMP σ)

)
(Proposition 9.3)

= HomG

(
π, iGP σ

)
.
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We now prove (b). For the exactness of rGP = JN ◦ (δ
−1/2
P ⊗_) ◦ResGP , we note that the functors

δ
−1/2
P ⊗_ and ResGP are exact. It remains to show that JN : Rep(P )→ Rep(M) is exact. Let

(V ′, π′)
ϕ−→ (V, π)

ψ−→ (V ′′, π′′) (3.6)

be an exact sequence in Rep(P ). We have to show that JN (V ′)
JN (ϕ)−−−−→ JN (V )

JN (ψ)−−−−→ JN (V ′′) is
exact, that is, Im(JN (ϕ)) = Ker(JN (ψ)). We have JN (ψ) ◦ JN (ϕ) = JN (ψ ◦ ϕ) = 0, which shows
“⊆”. For the reverse inclusion, let v ∈ V such that JN (ψ)(v+V (N)) = 0. This means ψ(v) ∈ V ′′(N).
By Proposition 12.15, N is an increasing union of compact open subgroups. Hence, there exists a
compact open subgroup H ⊆ N such that ψ(v) ∈ V ′′(H). In other words: JH(ψ)(v+V (H)) = 0. By
Lemma 7.8 we have JH = π|N (eH) = (_)H , which is exact by Lemma 5.8. Hence, there exists v′ ∈ V ′
such that JH(ϕ)(v′+V ′(H)) = v+V (H), that is, ϕ(v′)−v ∈ V (H). As V (H) ⊆ V (N), this implies
ϕ(v′)− v ∈ V (N) and hence JN (ϕ)(v′+V ′(N)) = v+V (N). This shows Im(JN (ϕ)) = Ker(JN (ψ)).

We now prove that iGP = IndGP ◦(δ
1/2
P ⊗_) ◦ InfMP is exact. We observe that δ1/2

P ⊗_ and InfMP
are exact. It remains to show that IndGP : Rep(P )→ Rep(G) is exact. Consider an exact sequence

as in (3.6). We have to show that IndGP V
′ IndGP ϕ−−−−→ IndGP V

IndGP ψ−−−−→ IndGP V
′′ is exact. By Exercise 5.9

it suffices to show that, given any compact open subgroup H ⊆ G, the induced sequence

(IndGP V
′)H −→ (IndGP V )H −→ (IndGP V

′′)H (3.7)

is exact. By the Mackey decomposition (Proposition 9.5) we have

(IndGP V )H ∼=
( ∏
g∈P\G/H

IndHg−1Pg∩H g
−1
∗ V

)H
=

∏
g∈P\G/H

(IndHg−1Pg∩H g
−1
∗ V )H (3.8)

∼=
∏

g∈P\G/H

(g−1
∗ V )g

−1Pg∩H =
∏

g∈P\G/H

V P∩gHg
−1

,

where the second isomorphism is an instance of Frobenius reciprocity (Proposition 9.3); similarly
for (IndGP V

′)H and (IndGP V
′′)H . Now, the sequence (3.7) becomes∏

g∈P\G/H

(V ′)P∩gHg
−1

−→
∏

g∈P\G/H

V P∩gHg
−1

−→
∏

g∈P\G/H

(V ′′)P∩gHg
−1

which is exact, because (_)P∩gHg
−1

is exact by Lemma 5.8.1 This shows that IndGP is exact.

We prove (c). Let v1, . . . , vd ∈ V which generate (V, π) as a G-representation. Fix a compact
open subgroup H ⊆ G such that v1, . . . , vd ∈ V H . By the Iwasawa decomposition 12.7, the space
P\G is compact and hence P\G/H is finite. Let g1, . . . , gk be a representing system for P\G/H.
Then {π(gi)vj | 1 6 i 6 k, 1 6 j 6 d} generates (V, δ

−1/2
P ⊗ π|P ) as a P -representation. But then

{π(gi)vj + V (N)}i,j generate rGP (V, π) = (VN , JN (δ
−1/2
P ⊗ π|P )) as an M -representation.

We now prove (d). Assume (W,σ) ∈ Rep(M) is admissible. Let H ⊆ G be a compact open
subgroup. We have to show that (IndGP W )H is finite dimensional. Since clearly (W, δ

1/2
P ⊗ InfMP σ)

1Note that P\G/H is finite by the Iwasawa decomposition 12.7, and hence the products are finite. But this is
not needed here.
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is admissible, the spaces WP∩gHg−1

are finite dimensional for all g ∈ G. By the Iwasawa decom-
position 12.7, P\G/H is finite. Now, (3.8) shows that (IndGP W )H is a finite product of finite
dimensional vector spaces, hence itself finite dimensional. Thus, iGP (W,σ) is admissible.

Finally, we prove (e). Let Q ⊇ P be a parabolic subgroup of G with Levi L and unipotent radical
R. Note that N ⊆ Q = LR and R E N is a normal subgroup, so that we have N = (N ∩ L) · R.
For every m ∈M we have by Lemma 14.1 (and the fact in its proof)

δP (m) = [mKNm
−1 : KN ] = [mKN∩Lm

−1 : KN∩L] · [mKRm
−1 : KR] = δP∩L(m) · δQ(m).

Let (V, π) ∈ Rep(G). We have to show that the maps

V

JN (V ) JN∩L(JR(V ))

f1 f2

factor through the dashed isomorphism. The kernel of f1 is V (N) and the kernel of f2 is given
by V (N ∩ L) + V (R). Since N = (N ∩ L) · R, we have V (N ∩ L) + V (R) = V (N). [Indeed,
“⊆” is clear, and for each u = xy ∈ N with x ∈ N ∩ L and y ∈ R, we have v − π(u)v =
(v− π(y)v) + (π(y)v− π(x)π(y)v) ∈ V (N ∩L) +V (R), which shows “⊇”.] We thus have a canonical
isomorphism

JN (V )
∼=−→ JN∩L

(
JR(V )

)
given by v + V (N) 7→ (v + V (R)) + JR(V )(N ∩ L). Since also δP (m) = δP∩L(m) · δQ(m) for all
m ∈M , this isomorphism induces the canonical isomorphism rGP π

∼=−→ rLP∩L rGQ π.
Now, for all (W,σ) ∈ Rep(M) and (V, π) ∈ Rep(G) we have by (a) natural isomorphisms

HomG

(
π, iGQ iLP∩L σ

) ∼= HomL

(
rGQ π, i

L
P∩L σ

) ∼= HomM

(
rLP∩L rGQ π, σ

)
∼= HomM

(
rGP π, σ

) ∼= HomG

(
π, iGP σ

)
By the Yoneda lemma below, we deduce a natural isomorphism iGQ iLP∩L σ

∼= iGP σ.

Yoneda Lemma 14.4. Let A be a category, and fix two objects A,B ∈ A . Suppose that there is
a natural bijection

αC : HomA (C,A)
∼=−→ HomA (C,B)

for each C ∈ A . Then αA(idA) : A→ B is an isomorphism in A .

Proof. Since αB is surjective, there exists a morphism ψ : B → A with αB(ψ) = idB . The naturality
means that for every morphism φ : C → C ′ in A the diagram

HomA (C ′, A) HomA (C ′, B)

HomA (C,A) HomA (C,B)

αC′

φ∗ φ∗

αC

is commutative, i.e., αC(f ◦ φ) = αC′(f) ◦ φ for all f : C ′ → A.
By naturality we have αA(idA) ◦ ψ = αB(idA ◦ψ) = αB(ψ) = idB. Conversely, we compute

αA(ψ ◦ αA(idA)) = αB(ψ) ◦ αA(idA) = idB ◦αA(idA) = αA(idA). As αA is injective, we deduce
ψ ◦ αA(idA) = idA. Hence, αA(idA) is an isomorphism with inverse ψ.
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§15. Cuspidal Representations and Uniform Admissibility

Recall G = Mn for some partition n = (n1, . . . , nr) of n and K = GLn(oF ) ∩G.

Definition 15.1. A representation (V, π) ∈ Rep(G) is called cuspidal if rGP (V, π) = {0} for every
standard parabolic subgroup P = MN ( G.

Note that the condition rGP π = {0} is equivalent to JN (V ) = {0} (and hence to V = V (N)).

Remark. (a) As rGP is exact by Theorem 14.3(b), it follows that every subquotient of a cuspidal
representation is cuspidal.

(b) If (V, π) is cuspidal, then rGP (V, π) = {0} for every (not necessarily standard) parabolic
subgroup P = MN ( G. Indeed, if g ∈ G is such that gPg−1 is a standard parabolic, then
V = π(g−1)(V ) = π(g−1)(V (gNg−1)) ⊆ V (N).

(c) If (V, π) ∈ Rep(G) satisfies rGP (V, π) = {0} for every maximal parabolic subgroup P ( G, then
(V, π) is cuspidal. This follows at once from the fact that rGP is transitive (Theorem 14.3(e)).

The following important result makes precise the assertion that the cuspidal representations are
the “building blocks” of smooth representations.

Lemma 15.2. Let (V, π) ∈ Rep(G) be irreducible. There exists a standard parabolic subgroup
P = MN of G and an irreducible cuspidal representation (W, τ) ∈ Rep(M) together with a G-
equivariant embedding

(V, π) ↪→ iGP (W, τ)

Proof. Let P = MN be a minimal standard parabolic subgroup with JN (V ) 6= {0}. Then rGP π is
cuspidal by Theorem 14.3(e) and the minimality of P . As π is finitely generated, so is rGP π (Theo-
rem 14.3(c)). Hence, there exists an irreducible quotient rGP π →→ τ in Rep(M). By Theorem 14.3(a),
we obtain a non-zero G-equivariant map π → iGP τ , which is injective since π is irreducible.

Recall the subgroup G0 := det−1
n (
∏r
i=1 o

×
F ) ⊆ G and the center Z = Z(G) ∼=

∏r
i=1 F

× of G.

Theorem 15.3. Let (V, π) ∈ Rep(G). The following are equivalent:

(a) (V, π) is cuspidal.

(b) The functions fH,v : G → V (Definition 11.2) have compact support modulo Z(G) for all
compact open subgroups H ⊆ G and all v ∈ V r {0}.

(c) The matrix coefficients of (V, π) (Definition 11.3) have compact support modulo Z(G).

(d) (V, π|G0) is compact (Definition 11.2).

Proof. “(a) =⇒ (b)”: Let H ⊆ G and v ∈ V as in (b). Choose m > 1 such that Km ⊆ H and
v ∈ V Km . Then Supp fH,v ⊆ Supp fKm,v and hence we may assume from the start that H = Km

and v ∈ V H . Then fH,v(g) = π(eH)π(g−1)v = π(eHg−1H)v for all g ∈ G. Consider the function

φv : Λ+(G) −→ V H ,

λ 7−→ π(cλ)v = fH,v(λ
−1),
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where cλ = eHλH . We have G = KΛ+(G)K by the Cartan decomposition 12.4. Note that
π(eH)π(k) = π(k)π(eH) for all k ∈ K (as H is normal in K). For any g = k′λk with k, k′ ∈ K and
λ ∈ Λ+(G), we have fH,v(g−1) = π(k′)fH,π(k)v(λ

−1) = π(k′)φπ(k)v(λ) and hence(
Supp fH,v

)−1 ⊆
⋃

k∈K/H

K Suppφπ(k)vK.

It therefore suffices to show that Suppφv is finite modulo Z, for all v ∈ V H . Fix any v ∈ V H .
Given ν ∈ Λ+(G) r Z, let Pν = MνUν be the unique (proper) parabolic subgroup of G for which
ν ∈ Λ++(Mν , G) (see Notation 12.14). By Proposition 13.3 and since (V, π) is cuspidal, we have

V H = V H ∩ V (Uν) = V H ∩
⋃
k>0

Kerπ(cνk).

Hence, there exists kν ∈ Z>0 such that φv(νk) = 0 for all k > kν . Recall the elements λs,i from (3.2);
for every λ ∈ Λ+(G) we then have λ =

∏r
s=1

∏ns
is=1 λ

ds,is (λ)
s,is

for uniquely determined ds,is(λ) ∈ Z>0,
for 1 6 is < ns, and ds,ns(λ) ∈ Z. Define k0 := max

{
kλs,is

∣∣ 1 6 s 6 r, 1 6 is < ns
}
and then

X :=
{
λ ∈ Λ+(G)

∣∣ ds,is(λ) < k0 for all 1 6 is < ns, all 1 6 s 6 r
}
.

Clearly, #(X/Z ∩ X) = k
∑r
s=1(ns−1)

0 is finite. If λ ∈ Λ+(G) r X, then λ = λ′λ
ds,i(λ)
s,i , for some

λ′ ∈ Λ+(G), some 1 6 s 6 r and 1 6 i < ns with ds,i(λ) > k0. By (3.1) we have

φv(λ) = π(cλ′)φv(λ
ds,i(λ)
s,i ) = 0.

It follows that Suppφv ⊆ X is finite modulo Z.

“(b) =⇒ (c)”: Let ξ ∈ Ṽ and v ∈ V , both non-zero. Let H ⊆ G be a compact open subgroup
such that ξ ∈ Ṽ H . Then ξ = ξ ◦ π(eH) and hence〈

ξ, fH,v(g)
〉

=
〈
ξ, π(eH)π(g−1)v

〉
=
〈
ξ, π(g−1)v

〉
= mξ,v(g)

for all g ∈ G. We deduce Suppmξ,v ⊆ Supp fH,v.

“(c) =⇒ (d)”: Let ξ ∈ Ṽ and v ∈ V , both non-zero. By assumption, the matrix coefficient
mξ,v has compact support modulo Z. Fix a compact open subgroup H ⊆ G0 such that ξ ∈ Ṽ H

and v ∈ V H . Then, there exist g1, . . . , gd ∈ G such that Suppmξ,v =
⊔d
i=1HgiZH. Without loss

of generality, we may assume that gi ∈ G0 provided giZ ∩ G0 6= ∅; this implies HgiZH ∩ G0 ⊆
Hgi(Z ∩G0)H. Then

Suppmξ,v ∩G0 ⊆
d⊔
i=1

Hgi(Z ∩G0)H

which shows that mξ,v : G0 → C has compact support. By Theorem 11.4 it follows that (V, π|G0) is
compact.

“(d) =⇒ (a)”: Let P = MN be a proper parabolic subgroup of G and fix λ ∈ Λ++(M,G) ∩G0

(Exercise: Check that such λ exists!). We have to show V = V (N). Let v ∈ V and choose m > 0
such that v ∈ V Km . By assumption, the function

fKm,v : G0 −→ V,

g 7−→ π(eKm)π(g−1)v = π(cg−1)v
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has compact support, where cg−1 := eKmg−1Km ∈ H(G,Km) is the element from Lemma 13.1.
In particular, fKm,v(λ−l) = π(cλl)v = 0 for l � 0. By Proposition 13.3 we have v ∈ V Km ∩⋃
l>0 Kerπ(cλl) = V Km ∩ V (N). Hence v ∈ V (N).

Theorem 15.4. Every irreducible smooth representation of G is admissible.

Proof. Let (V, π) ∈ Rep(G) be irreducible. By Lemma 15.2 there exists a parabolic subgroup
P = MN and an irreducible cuspidal representation (W, τ) ∈ Rep(M) such that (V, π) ⊆ iGP (W, τ).
We first argue that (W, τ) is admissible. Let g1, . . . , gl ∈ M such that M =

⊔l
i=1 Z(M)M0gi.

Since each w ∈W r {0} generates W as a M -representation, we deduce that {τ(g1)w, . . . , τ(gl)w}
generates W as a Z(M)M0-representation. By Corollary 12.5, the center Z(M) acts on W through
a character. Hence, {τ(gi)w}16i6l generates W as a M0-representation. Proposition 11.5 combined
with Theorem 15.3 implies that (W, τ|M0) is admissible. But then (W, τ) is an admissible M -
representation. Now, iGP (W, τ) is admissible by Theorem 14.3(d). Thus, also the subrepresentation
(V, π) is admissible.

Exercise. Let (V, π) ∈ Rep(G). Show that (V, π) is (cuspidal and) irreducible if and only if (Ṽ , π̃)
is (cuspidal and) irreducible.

It turns out that one can prove a stronger version of Theorem 15.4.

Burnside’s Theorem 15.5. Let R be an associative C-algebra and W a finite dimensional simple
R-module. The action map R→→ EndC(W ) is surjective.

Proof. Note that EndR(W ) ∼= C by Schur’s Lemma 8.6. Let w1, . . . , wd be a C-basis of W . For
all v1, . . . , vd ∈ W , Jacobson’s Density Theorem 10.9 provides r ∈ R such that rwi = vi for all
1 6 i 6 d. This proves the claim.

Theorem 15.6 (Uniform Admissibility). Let H ⊆ G be a compact open subgroup of G. There
exists a constant c = c(G,H) > 0 such that dimV H 6 c for every irreducible (V, π) ∈ Rep(G).

Proof. Let (V, π) ∈ Rep(G) be irreducible and hence admissible by Theorem 15.4. Let m > 1 such
that Km ⊆ H. Since V H ⊆ V Km , we may assume from the start that H = Km. By Theorem 7.9(a),
V H is a simple H(G,H)-module. By Burnside’s Theorem 15.5, it follows that the action map
H(G,H)→→ EndC(V H) is surjective. Recall from Theorem 13.2 that

H(G,H) = H(K,H)CH(K,H),

where C ⊆ H(G,H) is the commutative subalgebra spanned by the cλ = eHλH for λ ∈ Λ+(G).
Recall also from the proof of Theorem 13.2 that C is generated by l :=

∑r
s=1(ns + 1) elements. By

Lemma 15.7 we have dimπ(C) 6 (dimV H)2−21−l
. We now estimate

(dimV H)2 = dim EndC(V H) = dimπ(H(G,H)) 6 (dimH(K,H))2 · dimπ(C)

6
(
dimH(K,H)

)2 · (dimV H)2−21−l
.

Hence, rearranging gives dimV H 6 c(G,H) := (dimH(K,H))2l .



§15. Cuspidal Representations and Uniform Admissibility 67

Lemma 15.7. Let V be a C-vector space of dimension d and let R ⊆ EndC(V ) be a commutative
subalgebra generated (as a C-algebra) by elements a1, . . . , al ∈ R. Then

dimR 6 fl(d) := d2−21−l
.

Proof. Step 0: We have fl(a+ b) > fl(a) +fl(b) for all a, b ∈ R>0. Note that for each x > 0 we have
f ′′l (x) = (2− 21−l)(1− 21−l)x−21−l

> 0. Hence, the function x 7→ f ′l (x) is monotonically increasing,
that is, f ′l (a + b) > f ′l (b) for all a, b ∈ R>0. For each fixed a > 0 we deduce fl(a + b) − fl(a) =∫ b

0
f ′l (a+ x) dx >

∫ b
0
f ′l (x) dx = f(b) for all b > 0. This proves the claim.

Step 1: We reduce to the case where each ai is nilpotent. As R is commutative, all generalized
eigenspaces of V are R-invariant. By the Jordan decomposition and induction on l, we find a
decomposition V = V1⊕· · ·⊕Vr into R-invariant subspaces such that for all 1 6 i 6 l and 1 6 j 6 r
there exists λij ∈ C such that (ai)|Vj−λij idVj is nilpotent. Denoting Rj the image of R in EndC(Vj),
we observe R ⊆

∏r
i=1Rj . Put dimVj = dj so that d = d1 + · · ·+ dr. By Step 0 we have

fl(d) = fl(d1 + · · ·+ dr) > fl(d1) + · · ·+ fl(dr).

We thus reduce to showing dimRj 6 fl(dj) for all 1 6 j 6 r. Since {(ai)|Vj − λij idVj}i generates
Rj , we may assume from the start that a1, . . . , al are nilpotent.

Step 2: Denote φl(d) the largest possible dimension of a commutative subalgebra R ⊆ EndC(V )
generated by nilpotent elements a1, . . . , al. We claim

φl(d) 6 φl
(
bd− φl(d)/dc

)
+ φl−1(d), for all d > 0, l > 1. (3.9)

Let a be the ideal generated by a1, . . . , al, and put Vj := ajV . We thus have a chain of subspaces

{0} = Vd ⊆ Vd−1 ⊆ · · · ⊆ V1 ⊆ V0 = V ;

here, Vd = adV = {0} follows from the fact that, if ajV = aj+1V for some j, then ajV = aj+iV for
all i > 0 and hence ajV = {0}, because a is a nilpotent ideal. Let W be a complement of V1 in V of
dimension m. Note that ajW +aj+1V = aj(W +V1) = ajV = Vj , that is, ajW generates Vj modulo
Vj+1. It follows that RW = V . But this means that the composite R ↪→ EndC(V )→ HomC(W,V )
is injective (here, the second map is given by restriction). We deduce dimR 6 md and hence
m > φl(d)/d. Let R′ ⊆ R be the subalgebra generated by a2, . . . , al and let b = a1R. Then
R = R′ + b and dimR′ 6 φl−1(d). The composite V a1−→ a1V ⊆ V1 ⊆ V induces a commutative
diagram

EndC(V )

HomC(V1, V ) HomC(a1V, V ) EndC(V ).

a1

f 7→f◦a1

The image of R under the diagonal map is b. Hence, the image R′′ of R under the vertical arrow
maps surjectively onto b. Observe that R′′ is in fact contained in EndC(V1). As φl is monotonically
increasing, we deduce

dim b 6 dimR′′ 6 φl(dimV1) = φl(d−m) 6 φl
(
bd− φl(d)/dc

)
.
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Together, we obtain dimR 6 dim b + dimR′ 6 φl(bd− φl(d)/dc) + φl−1(d) proving the claim.

Step 3: We claim that
fl
(
bd− fl(d)/dc

)
+ fl−1(d) 6 fl(d).

Once this is established, we obtain φl(d) 6 fl(d) from the claim and (3.9) by induction on d and l.
This then finishes the proof of the lemma.

Put ε := 21−l and note 0 < ε 6 1. Let d > 1, so that (1−d−ε)2−ε 6 1−d−ε. Since 21−(l−1) = 2ε,
we compute

fl
(
bd− fl(d)/dc

)
+ fl−1(d) 6

(
d− d1−ε)2−ε + d2−2ε

= d2−ε ·
(
1− d−ε

)2−ε
+ d2−2ε

= d2−ε ·
((

1− d−ε
)2−ε

+ d−ε
)

6 d2−ε ·
(
1− d−ε + dε

)
= fl(d).

This finishes the proof.

Variant 15.8. Let H ⊆ G0 be a compact open subgroup. Then dimWH 6 c(G,H) for every
irreducible (W, τ) ∈ Rep(G0), where c(G,H) is the constant from Theorem 15.6.

Proof. Let (W, τ) ∈ Rep(G0) be an irreducible representation. It is clear that indGG0 τ is finitely
generated and hence admits a quotient indGG0 τ →→ σ, where (E, σ) ∈ Rep(G) is an irreducible
representation. By Frobenius reciprocity 9.9, we have a natural bijection

HomG

(
indGG0 τ, σ

) ∼= HomG0

(
τ, σ|G0

)
.

Hence, we obtain a non-zero map (W, τ)→ (E, σ|G0), which is injective as τ is irreducible. For each
compact open subgroup H ⊆ G0, we deduce dimWH 6 dimEH 6 c(G,H).

We finish with some consequences of Variant 15.8.

Proposition 15.9. Fix a compact open subgroup H ⊆ G. There exists a compact open subset
Ω = Ω(G0, H) ⊆ G0 such that for all irreducible compact (W, τ) ∈ Rep(G0) and all w ∈ WH , we
have Supp fH,w ⊆ Ω.

Proof. Let (W, τ) ∈ Rep(G0) be an irreducible compact representation and let w ∈WH . Let m > 1
such that Km ⊆ H. As Supp fH,w ⊆ Supp fKm,w, we may assume from the start that H = Km.
Put Λ+(G0) := Λ+(G) ∩G0 and consider the function

φw : Λ+(G0) −→WH ,

λ 7−→ τ(cλ)w = fH,w(λ−1),

where cλ = eHλH in H(G0, H). As already observed in the proof of “(a) =⇒ (b)” in Theorem 15.3,
we have (Supp fH,w)−1 ⊆

⋃
k∈K/H K Suppφτ(k)wK. Hence, it suffices to find a finite subset Ω′ ⊆

Λ+(G0) such that Suppφw ⊆ Ω′ for all w ∈ WH and all irreducible compact (W, τ) ∈ Rep(G0),
because then Ω = K(Ω′)−1K has the desired properties.
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Claim. The monoid Λ+(G0) is finitely generated.

Proof. Since Λ+(G0) =
∏r
i=1 Λ+(GLni(F )0), we may assume without loss of generality that G =

GLn(F ). Identifying diag($m1 , . . . , $mn) with (m1, . . . ,mn) ∈ Zn ⊆ Qn, we have to show that the
additive monoid M := {(m1, . . . ,mn) ∈ Zn |m1 > · · · > mn and

∑n
i=1mi = 0} is finitely generated.

For each 1 6 i 6 n − 1, we denote λi = (λi,1, . . . , λi,n) ∈ Qn the unique element satisfying∑n
j=1 λi,j = 0 and λi,j − λi,j+1 = δij for all 1 6 j 6 n− 1. More explicitly, we put

λi :=
1

n

(
n− i, . . . , n− i︸ ︷︷ ︸

i times

,−i, . . . ,−i︸ ︷︷ ︸
(n− i)-times

)
.

Consider the finite set X :=
{∑n−1

i=1 aiλi

∣∣∣ a1, . . . , an−1 ∈ {0, 1, . . . , n− 1}
}
∩ Zn. We claim that a

generating set for M is then given by X ∪ {nλ1, . . . , nλn−1}. Indeed, it is clear that this set is
contained in M . Note that every x = (x1, . . . , xn) ∈ M is uniquely determined by the sequence
of differences x1 − x2, x2 − x3, . . . , xn−1 − xn, because of x1 + x2 + · · · + xn = 0. But this means
x =

∑n−1
i=1 (xi − xi+1) · λi. Writing xi − xi+1 = ain + bi with ai ∈ Z>0 and 0 6 bi < n, we

see that x =
∑n−1
i=1 biλi +

∑n−1
i=1 ai · nλi can be expressed (non-uniquely) as a sum of elements in

X ∪ {nλ1, . . . , nλn−1}.

We fix a family of generators ν1, . . . , νl of Λ+(G0) and want to show that

Ω′ :=

{
l∏
i=1

νdii

∣∣∣∣∣ 0 6 d1, . . . , dl 6 c(G,H)

}

has the desired properties. We will deduce this from the following claim:

Claim. Let λ ∈ Λ+(G0) with λ 6= 1. Let n0 ∈ Z>0 such that φw(λn0) 6= 0. Then {φw(λj)}n0
j=1 ⊆

WH is linearly independent. In particular, n0 6 c(G,H).

Proof of the claim. Note that φw has finite support, since (W, τ) is compact. Let N ∈ Z>0 be
the smallest integer with φw(λN ) = 0. Using the relations (3.1) (that is, cλλ′ = cλ ∗ cλ′ for all
λ, λ′ ∈ Λ+(G)), we see that φw(λN+i) = τ(cλi)φw(λN ) = 0 for all i > 0. In particular, we have
φw(λj) 6= 0 for all 1 6 j 6 n0. Increasing n0 if necessary, we may assume n0 = N − 1. Let
a1, . . . , an0 ∈ C such that x :=

∑n0

j=1 ajφw(λj) = 0. Then

0 = τ(cλn0−i)x =

i∑
j=1

ajφw(λn0−i+j)

for all i = 1, . . . , n0. We inductively deduce a1 = a2 = · · · = an0 = 0. The last assertion follows
from Variant 15.8.

Let now λ ∈ Λ+(G0)rΩ′ and write λ = λ′νdii for some λ′ ∈ Λ+(G0) and some i with di > c(G,H).
The claim applied to νi, together with (3.1), shows

φw(λ) = τ(cλ′)φw
(
νdii
)

= 0.

Hence, Suppφw ⊆ Ω′. This finishes the proof.
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Corollary 15.10. Let H ⊆ G be a compact open subgroup. Then G0 has only finitely many
isomorphism classes of irreducible compact representations (W, τ) with WH 6= {0}.

Proof. Let (W1, τ1), . . . , (Wl, τl) be pairwise non-isomorphic irreducible compact G0-representations.
Fix non-zero vectors wi ∈ WH

i and ξi ∈ W̃H
i for all 1 6 i 6 l. Since ξi ◦ fH,wi = mξi,wi , it follows

that Suppmξi,wi ⊆ Ω(G0, H) for all i, where Ω(G0, H) ⊆ G0 denotes the compact open subset from
Proposition 15.9. We may assume that Ω(G0, H) = HΩ(G0, H)H. Then H\Ω(G0, H)/H has finite
cardinality, say, L, and hence the space C∞c (Ω(G0, H), H) of H-biinvariant functions has dimension
L. The following claim shows l 6 L, which then finishes the proof.

Claim. The matrix coefficients mξi,wi , for 1 6 i 6 l, are linearly independent in C∞c (Ω(G0, H), H).

Proof of the claim. Let a1, . . . , al ∈ C such that x :=
∑l
i=1 aimξi,wi = 0. By Proposition 11.10

we have τj ◦ mξi,wi = 0 for j 6= i, and τi ◦ mξi,wi = d(τi)
−1 · wi ⊗ ξi, where d(τi) denotes the

formal degree of τi. Hence, for each 1 6 j 6 l we have 0 = τj ◦ x = d(τj)
−1ajwj ⊗ ξj . We deduce

a1 = · · · = al = 0.

§16. Interlude: Decomposition of Categories

For this section only, let G be a locally profinite group.

Definition 16.1. (a) We denote Irr(G) the set of isomorphism classes of irreducible smooth
G-representations. Given an irreducible G-representation (V, π), we denote [(V, π)] the iso-
morphism class of (V, π). By abuse of notation we usually write (V, π) ∈ Irr(G).

(b) Let (V, π) ∈ Rep(G). We denote JH(V ) (or JH(π)) the set of (isomorphism classes of)
irreducible subquotients (also called Jordan–Hölder factors of (V, π)).

(c) We say (V, π) has finite length if there exists a finite filtration {0} = V0 ⊆ V1 ⊆ · · · ⊆ Vl = V of
G-invariant subspaces such that Vi/Vi−1 is irreducible for all 1 6 i 6 l. The integer `(V ) := l
is called the length of V .

Lemma 16.2. Let (V, π) ∈ Rep(G), and let {0} = V0 ⊆ V1 ⊆ · · · ⊆ Vl = V be a finite filtration of
G-invariant subspaces such that Vi/Vi−1 is irreducible for all 1 6 i 6 l.

(a) One has JH(V ) = {[Vi/Vi−1] | 1 6 i 6 l}. In particular, JH(V ) is finite.

(b) Suppose G is countable at infinity. If (W,σ) ∈ Rep(G) has finite length, then HomG(V,W ) is
finite dimensional.

Proof. In (a), the relation “⊇” is trivial, so we only need to prove “⊆”. Let W ′ ⊆ W ⊆ V
be G-invariant subspaces such that W/W ′ is irreducible. Let i be the unique index such that
W ∩ Vi−1 ⊆ W ′ and W ∩ Vi * W ′. We then have W ∩ Vi−1 = W ′ ∩ Vi−1 and W ′ ∩ Vi ( W ∩ Vi.
We deduce W ∩ Vi−1 = W ′ ∩ Vi−1 ⊆W ′ ∩ Vi (W ∩ Vi. We obtain non-zero maps

W

W ′
W ∩ Vi
W ′ ∩ Vi

W ∩ Vi
W ′ ∩ Vi−1

W ∩ Vi
W ∩ Vi−1

Vi
Vi−1

.

As W/W ′ and Vi/Vi−1 are irreducible, all maps are isomorphisms. This shows (a).
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We prove (b) by induction on l + `(W ). If l + `(W ) 6 2, then dim HomG(V,W ) 6 1 by
Schur’s Lemma 11.6. Let now l + `(W ) > 2. If l > 1, then we have an exact sequence
{0} → HomG(Vl/Vl−1,W ) → HomG(V,W ) → HomG(Vl−1,W ). The induction hypothesis implies
dim HomG(V,W ) 6 dim HomG(Vl/Vl−1,W ) + dim HomG(Vl−1,W ) <∞. Similarly, if `(W ) > 1, let
{0} 6= W ′ ( W be a proper G-invariant subspace so that 0 < `(W ′), `(W/W ′) < `(W ). We then
obtain an exact sequence {0} → HomG(V,W ′)→ HomG(V,W )→ HomG(V,W/W ′), and the induc-
tion hypothesis implies dim HomG(V,W ) 6 dim HomG(V,W ′) + dim HomG(V,W/W ′) <∞.

Lemma 16.3. Let (V, π) ∈ Rep(G).

(a) If W ⊆ V is a G-invariant subspace, then

JH(V ) = JH(W ) ∪ JH(V/W ).

(b) One has JH(V ) = ∅ if and only if V = {0}.

(c) Let {Wi}i∈I be a family of G-invariant subspaces of V . Then

JH
(∑
i∈I

Wi

)
=
⋃
i∈I

JH(Wi).

Proof. We prove (a). The inclusion JH(W ) ⊆ JH(V ) is obvious, and JH(V/W ) ⊆ JH(V ) follows
from the third isomorphism theorem. Conversely, let V ′′ ⊆ V ′ ⊆ V be G-invariant subspaces such
that V ′/V ′′ is irreducible (and hence defines an element of JH(V )). If V ′ ∩W 6⊆ V ′′, then the
projection map V ′ ∩W → V ′/V ′′ is non-zero and hence surjective, since V ′/V ′′ is irreducible. It
follows that V ′/V ′′ ∈ JH(W ). If V ′ ∩W ⊆ V ′′, then

V ′/V ′′ ∩W V/W

V ′/V ′′

shows V ′/V ′′ ∈ JH(V/W ).
For part (b), it it obvious that V = {0} implies JH(V ) = ∅. If V 6= {0}, let V ′ ⊆ V be

the G-invariant subspace generated by a non-zero vector v ∈ V . By Zorn’s Lemma there exists a
maximal G-invariant subspace V ′′ ⊆ V ′ with v /∈ V ′′, so that V ′/V ′′ ∈ JH(V ).

We prove (c). The inclusion “⊇” follows from (a). Let now V ′′ ⊆ V ′ be G-invariant subspaces
of
∑
i∈IWi such that V ′/V ′′ is irreducible. Let v ∈ V ′ r V ′′. There exist i1, . . . , in ∈ I such that

v ∈
∑n
j=1Wij . Hence the G-invariant subspace X = C[G]v generated by v is contained in

∑n
j=1Wij .

As the map X/X ∩V ′′ ↪→ V ′/V ′′ is non-zero and V ′/V ′′ is irreducible, it is an isomorphism. Hence
V ′/V ′′ ∼= X/X ∩ V ′′ ∈ JH(

∑n
j=1Wij ). Define Yk :=

∑k
j=1Wij for each 1 6 k 6 n and Y0 := {0}.

Then Wik →→ Yk/Yk−1 is surjective so that JH(Yk/Yk−1) ⊆ JH(Wik). Applying (a) repeatedly, we
obtain

V ′/V ′′ ∈ JH(Yn) = JH(Yn/Yn−1) ∪ JH(Yn−1) = · · · =
n⋃
k=1

JH(Yk/Yk−1) ⊆
n⋃
k=1

JH(Wik).
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Definition 16.4. (a) Let {Ci}i∈I be a family of full subcategories of Rep(G). We write

Rep(G) =
∏
i∈I

Ci (3.10)

if every (V, π) ∈ Rep(G) decomposes as V =
⊕

i∈I Vi, where Vi ∈ Ci for i ∈ I, and for all
Vi ∈ Ci and Vj ∈ Cj with i 6= j, we have HomG(Vi, Vj) = {0}.
We denote Irr(Ci) the set of isomorphism classes of irreducible smooth G-representations
(V, π) that lie in Ci. Note that (3.10) implies Irr(G) =

⊔
i∈I Irr(Ci).

(b) Let S ⊆ Irr(G).

– We denote Rep(G)S the full subcategory of Rep(G) of all (V, π) with JH(V ) ⊆ S. Hence,
Irr(Rep(G)S) = S. Note that Rep(G)S is closed under the formation of subquotients,
extensions, and direct sums by Lemma 16.3.

– If (V, π) ∈ Rep(G) we denote by VS the sum of all G-invariant subspaces of V which lie
in Rep(G)S . Note that VS is the largest subrepresentation of V with VS ∈ Rep(G)S .

Lemma 16.5. Let S, S′ ⊆ Irr(G) with S ∩ S′ = ∅.

(a) Let (V, π) ∈ Rep(G). Then VS ∩ VS′ = {0} and hence VS ⊕ VS′ ⊆ V .

(b) For all (V, π) ∈ Rep(G)S and (V ′, π′) ∈ Rep(G)S′ we have HomG(V, V ′) = {0}.

Proof. We prove (a). Since JH(VS∩VS′) ⊆ JH(VS)∩JH(VS′) ⊆ S∩S′ = ∅, we deduce VS∩VS′ = {0}
from Lemma 16.3(b).

For part (b), observe first that V ′S′ = V ′ and hence V ′S = {0} by (a). For each f ∈ HomG(V, V ′),
the image Im(f) is a quotient of V and hence lies in Rep(G)S . Therefore, we have Im(f) ⊆ V ′S = {0},
which shows f = 0.

Definition 16.6. Let Irr(G) =
⊔
α∈A Sα be a partition. We say that {Sα}α splits an object

(V, π) ∈ Rep(G) if
V =

⊕
α∈A

VSα .

We say {Sα}α splits Rep(G) if it splits every object of Rep(G), that is,

Rep(G) =
∏
α∈A

Rep(G)Sα .

Lemma 16.7. Suppose Irr(G) =
⊔
α∈A Sα splits (V, π) ∈ Rep(G). Then {Sα}α splits every

subquotient of V .

Proof. Let W ⊆ V be a G-invariant subspace. It suffices to show W =
⊕

αW ∩ VSα , because
then also V/W ∼=

⊕
α VSα/W ∩ VSα . Put X := W/

⊕
αW ∩ VSα . For each α we have a surjection

W/W ∩ VSα →→ X and hence

JH(X) ⊆ JH(W/W ∩ VSα) ⊆ JH(V/VSα) ⊆ Irr(G) r Sα.

We deduce JH(X) ⊆
⋂
α Irr(G) r Sα = ∅, and then Lemma 16.3(b) implies X = {0}. Hence,

{Sα}α splits W .
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§17. Cuspidal Components

Recall G = Mn for some partition n = (n1, . . . , nr) of n. In this section we are going to relate the
representations of G0 and G and prove a first decomposition theorem for Rep(G).

Definition 17.1. Set Λ(G) := G/G0 ∼= Zr. We call

X (G) := Homgrp

(
Λ(G),C×

) ∼= (C×)r

the set of unramified characters of G. An element of X (G) consists of a (necessarily smooth)
character ψ : G→ C× such that ψ(G0) = {1}. The group structure on C× turns X (G) into a group;
concretely, for all φ, ψ ∈ X (G), the element

φψ : G −→ C×,
g 7−→ φ(g) · ψ(g)

lies in X (G).

Remark. The group X (G) carries the natural structure of a C-variety whose ring of functions is the
group algebra C[Λ(G)] of Λ(G), since

X (G) ∼= HomAlg

(
C[Λ(G)],C

)
,

where “HomAlg” denotes the set of homomorphisms of C-algebras. Since C[Λ(G)] ∼= C[t±1
1 , . . . , t±1

r ]
is an integral domain, it follows that X (G) is in fact connected (even irreducible).

The group G acts on Irr(G0) via (g, [(W,σ)]) 7→ [(W, g∗σ)], where we recall (g∗σ)(γ) := σ(g−1γg)
for γ ∈ G0.

Lemma 17.2. (a) G acts on Irr(G0) with finite orbits.
(b) Let (V, π) ∈ Rep(G) and (W,σ) ∈ Irr(G0). Denote V (σ) the σ-isotypic component of (V, π|G0).

For all g ∈ G one has
π(g) · V (σ) = V (g∗σ).

Proof. Let (W,σ) ∈ Irr(G0) and denote [(W,σ)] the corresponding isomorphism class. Let z ∈ Z(G)
and γ ∈ G0. The C-linear isomorphism σ(γ) :

(
W, (zγ)∗σ

)
→ (W,σ) is G0-equivariant: Indeed, for

all g ∈ G0 and w ∈W we compute

σ(γ)((zγ)∗σ)(g)w = σ(γ)σ(γ−1z−1gzγ)w = σ(γ)σ(γ−1gγ)w = σ(g)σ(γ)w.

Hence, (zγ) · [(W,σ)] = [(W, (zγ)∗σ)] = [(W,σ)], which shows that the action of G on Irr(G0) factors
through the finite group G/Z(G)G0. In particular, all orbits are finite.

We now prove (b). Recall that V (σ) the image of HomG0(σ, π|G0)⊗W → V , f ⊗w 7→ f(w). Let
g ∈ G. As above, we have a G0-equivariant isomorphism π(g) : (V, g∗π|G0)→ (V, π|G0), v 7→ π(g)v.
Now note that the diagram

HomG0

(
σ, π|G0

)
⊗W V (σ) V

HomG0

(
g∗σ, g∗π|G0

)
⊗W

HomG0

(
g∗σ, π|G0

)
⊗W V (g∗σ) V

⊆

π(g)

f 7→π(g)◦f

⊆
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commutes. It follows that the dashed arrow exists and is an isomorphism.

Proposition 17.3. Let (V, π) ∈ Irr(G).

(a) π|G0 is semisimple of finite length. Moreover, the irreducible G0-representations contained in
π|G0 form a single G-orbit.

(b) For any (V ′, π′) ∈ Irr(G), the following are equivalent:

(i) π|G0 ∼= π′|G0 ;
(ii) JH(π|G0) ∩ JH(π′|G0) 6= ∅;
(iii) π′ ∼= χ⊗ π for some χ ∈ X (G).

Proof. We prove (a). The subgroup Z(G)G0 has finite index in G and hence π|Z(G)G0 is semisimple
by Proposition 8.3. By Corollary 12.5, Z(G) acts by a character on π. Hence, π|G0 is semisimple.
Moreover, if (W, τ) ∈ Irr(G0) is contained in (V, π|G0), then so is (π(g)W,π|G0) ∼= (W, g∗τ), and
V =

∑
g∈G/Z(G)G0 π(g)W . This shows JH(π|G0) =

{
[g∗τ ]

∣∣ g ∈ G/Z(G)G0
}
, whence (a).

We now prove (b). The implications (iii) =⇒ (i) =⇒ (ii) are obvious, so we only show (ii) =⇒ (iii).
By (a) and Lemma 16.2, the C-vector space X := HomG0(π|G0 , π′|G0) is finite dimensional. The
assumption implies X 6= {0}. Define a G-representation (X, τ) via τ(g)f = π′(g) ◦ f ◦ π(g−1) for
all g ∈ G and f ∈ X. By construction, τ|G0 ≡ 1. Now, the abelian group Zr ∼= G/G0 acts on X.
As C is algebraically closed, there exists a character χ : G/G0 → C× and f ∈ X r {0} such that
τ(g)f = χ(g) · f for all g ∈ G. We compute

f
(
(χ⊗ π)(g)v

)
= χ(g) · f

(
π(g)v

)
=
(
τ(g)f

)(
π(g)v

)
= π′(g)f(v)

for all g ∈ G and v ∈ V . Thus, f : χ⊗ π → π′ is a non-zero G-equivariant map between irreducible
G-representations, hence an isomorphism.

Consider now the action of X (G) on Irr(G) given by χ · π := χ ⊗ π for χ ∈ X (G) and
(V, π) ∈ Irr(G).

Lemma 17.4. The stabilizer of any (π, V ) ∈ Irr(G) is a finite subgroup of X (G).

Proof. By Corollary 12.5, each (π, V ) ∈ Irr(G) admits a central character χπ : Z(G)→ C×. Take
any ψ ∈ X (G) which stabilizes π. Then χπ = χψ⊗π = ψ|Z(G) · χπ, so that ψ|Z(G) ≡ 1. It follows
that ψ lies in Homgrp(G/Z(G)G0,C×), which is finite because G/Z(G)G0 is finite.

Definition 17.5. Denote Irrcusp(G) the set of (isomorphism classes of) irreducible cuspidal repre-
sentations of G. By the equivalence “(a)⇐⇒ (d)” in Theorem 15.3, the action of X (G) on Irr(G)
restricts to an action on Irrcusp(G).

An orbit of the X (G)-action on Irrcusp(G) is called a cuspidal component . Observe that by
Lemma 17.4, every cuspidal component D is of the form D ∼= (C×)r/Γ, for a finite group Γ, and
hence carries itself the structure of a connected C-variety; see the following proposition.2

Proposition 17.6. Let X be an affine C-variety with coordinate ring C[X]. Let Γ be a finite
group together with a group homomorphism ρ : Γ→ AutC(X), where AutC(X) denotes the group of
automorphisms of the C-variety X. Then the orbit space X/Γ is an affine C-variety with coordinate
ring C[X]Γ.

2In fact, one can show that there is a non-canonical isomorphism D ∼= (C×)r, so D is a complex torus.
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Proof. Recall that an affine C-variety is a tuple (Y,C[Y ], ev) consisting of a set Y , a finitely
generated reduced commutative C-algebra C[Y ] and a bijection ev : Y

∼=−→ HomAlg(C[Y ],C); we
view each f ∈ C[Y ] as a function on Y via f(y) := ev(y)f for all y ∈ Y .3

A morphism (Y1,C[Y1], ev) → (Y2,C[Y2], ev) of C-varieties is a pair (ψ,ψ]) consisting of a
(set-theoretic) map ψ : Y1 → Y2 and a C-algebra homomorphism ψ] : C[Y2] → C[Y1] such that
f(ψ(y1)) = (ψ]f)(y1) for all y1 ∈ Y1 and f ∈ C[Y2].

The morphism ρ : Γ → AutC(X) comes with a group homomorphism ρ] : Γ → AutAlg(C[X])
such that f(ρ(g)x) = (ρ](g−1)f)(x) for all x ∈ X, g ∈ Γ and f ∈ C[X]. We consider the C-algebra

C[X]Γ :=
{
f ∈ C[X]

∣∣ ρ](g)f = f for all g ∈ Γ
}
.

We will prove that C[X]Γ is finitely generated and reduced, and that there is a (necessarily unique)
bijection X/Γ

∼=−→ HomAlg(C[X]Γ,C) making the following diagram commutative:

X HomAlg(C[X],C)

X/Γ HomAlg(C[X]Γ,C).

∼=

∃!α

As a subring of a reduced ring, C[X]Γ is reduced. We now prove that C[X]Γ is a finitely generated
C-algebra. Fix C-algebra generators f1, . . . , fr ∈ C[X]. For each i, the monic polynomial χfi(t) :=∏
g∈Γ(t − ρ](g)fi) =

∑#Γ
j=1 aijt

j lies in C[X]Γ[t] and satisfies χfi(fi) = 0. Let A ⊆ C[X]Γ be the
subalgebra generated by {aij}i,j . It is an easy exercise to show that the finite set {f c11 · · · f crr }06ci<#Γ

generates C[X] as an A-module. Since A is Noetherian, also C[X]Γ is finitely generated over A, say,
by f ′1, . . . , f ′s. Then {aij}i,j ∪ {f ′1, . . . , f ′s} generates C[X]Γ as a C-algebra.

It remains to prove that the composite X → HomAlg(C[X],C) → HomAlg(C[X]Γ,C) factors
through a bijection α : X/Γ

∼=−→ HomAlg(C[X]Γ,C). For all x ∈ X, g ∈ Γ, and f ∈ C[X]Γ we have
f(ρ(g)x) = (ρ](g−1)f)(x) = f(x), that is, f is constant on Γ-orbits. This implies that there is a
well-defined map α making the diagram commutative.

Let us prove that α is injective. We abbreviate ϕx := ev(x) for x ∈ X. Let x, y ∈ X such
that α(ρ(Γ)x) = α(ρ(Γ)y). This means ϕx(f) = ϕy(f) for all f ∈ C[X]Γ. We have to find g ∈ Γ
such that y = ρ(g)x or, equivalently, Kerϕy ⊆ Kerϕρ(g)x (for the equivalence, use that for each
ϕ ∈ HomAlg(C[X],C) one has C[X] = C ⊕ Kerϕ and ϕ|C = idC). Let f ∈ Kerϕy, and put
f ′ :=

∏
g∈Γ ρ

](g)f ∈ C[X]Γ. Then∏
g∈Γ

ϕρ(g)x(f) = ϕx(f ′) = ϕy(f ′) =
∏
g∈Γ

ϕy(ρ](g)f) = 0 in C.

Hence, there exists g ∈ Γ (depending on f) with ϕρ(g)x(f) = {0}. So far, we have proved Kerϕy ⊆⋃
g∈Γ Kerϕρ(g)x. By the Prime Avoidance Lemma, we have Kerϕy ⊆ Kerϕρ(g)x for some g ∈ Γ.

To wit, let g1, . . . , gr ∈ Γ be a minimal set with Kerϕy ⊆
⋃r
i=1 Kerϕρ(gi)x, and assume for a

contradiction that r > 2. By minimality, we have Kerϕy *
⋃
j 6=i Kerϕρ(gj)x, and so we find for each

3Let C[t1, . . . , tn] →→ C[Y ] be a surjective C-algebra homomorphism with kernel a = (a1, . . . , am). By
Hilbert’s Nullstellensatz, the map ev : Cn → HomAlg(C[t1, . . . , tn],C) is bijective, and under ev the inclusion
HomAlg(C[Y ],C) ↪→ HomAlg(C[t1, . . . , tn],C) identifies Y with the subset {y ∈ Cn | a1(y) = · · · = am(y) = 0}.
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i an element fi ∈ C[X] with ϕy(fi) = ϕρ(gi)x(fi) = 0 and ϕρ(gj)x(fi) 6= 0 for all j 6= i. Consider
f := f1 + f2 · · · fr ∈ C[X]. Then ϕy(f) = 0, but ϕρ(g1)x(f) = ϕρ(g1)x(f2) · · ·ϕρ(g1)x(fr) 6= 0 and
ϕρ(gj)x(f) = ϕρ(gj)x(f1) 6= 0 for all 2 6 j 6 r, which contradicts Kerϕy ⊆

⋃r
i=1 Kerϕρ(gi)x. This

concludes the proof of the injectivity of α.
Finally, we show that α is surjective. Equivalently, we have to show that the restriction map

HomAlg(C[X],C)→ HomAlg(C[X]Γ,C) is surjective. Let ϕ : C[X]Γ → C be a C-algebra homomor-
phism. Then Kerϕ is a maximal ideal of C[X]Γ. It suffices to find a maximal ideal m ⊆ C[X] such
that Kerϕ = C[X]Γ ∩ m, because then the unique C-algebra homomorphism ϕ′ : C[X] → C with
Kerϕ′ = m extends ϕ.

Consider the ideal a := C[X] · Kerϕ. We claim a 6= C[X]. Assume for a contradiction that
1 ∈ a. Then we can write 1 =

∑n
i=1 fihi, for certain fi ∈ C[X] and hi ∈ Kerϕ. But then for

f̃i := 1
#Γ

∑
g∈Γ ρ

](g)fi ∈ C[X]Γ, we have

n∑
i=1

f̃ihi =

n∑
i=1

1

#Γ

∑
g∈Γ

ρ](g)fi · hi =

n∑
i=1

1

#Γ

∑
g∈Γ

ρ](g)fi · ρ](g)hi

=

n∑
i=1

1

#Γ

∑
g∈Γ

ρ](g)(fihi) =
1

#Γ

∑
g∈Γ

ρ](g)
( n∑
i=1

fihi

)
=

1

#Γ

∑
g∈Γ

ρ](g)(1) = 1.

Hence, 1 =
∑n
i=1 f̃ihi ∈ Kerϕ, which contradicts the fact that Kerϕ is a proper ideal of C[X]Γ. This

shows a 6= C[X]. By Zorn’s lemma we find a maximal ideal m ⊆ C[X] containing a. By construction,
we have Kerϕ ⊆ C[X]Γ ∩m. Since Kerϕ is maximal, it follows that Kerϕ = C[X]Γ ∩m.

Proposition 17.7. Let D ⊆ Irrcusp(G) be a cuspidal component. Then D splits the category
Rep(G).

Proof. Put D′ := Irr(G) r D and let (V, π) ∈ Rep(G). We have to show V = VD ⊕ VD′ , where
VD ∈ Rep(G)D and VD′ ∈ Rep(G)D′ .

Let (W,σ) ∈ D. By Proposition 17.3, the restriction ρ := σ|G0 is semisimple of finite length,
only depends on the X (G)-orbit of σ, and JH(ρ) = {ρ1, . . . , ρl} forms a single G-orbit. Since σ is
cuspidal, Theorem 15.3 shows that ρ is compact, hence also ρ1, . . . , ρl ∈ Irr(G0) are compact.

Put τ := π|G0 and recall the G0-equivariant projections τ(eρi) : V → V from Theorem 11.12.
They provide a decomposition V = V (ρi)⊕Ker τ(eρi) in Rep(G0), where V (ρi) = Im τ(eρi) is the
ρi-isotypic component of V and ρi /∈ JH(Ker τ(eρi)). These satisfy the following properties:

(i) τ(eρi) ◦ τ(eρj ) = 0 for all i 6= j. Indeed, we have JH
(
τ(eρi) Im τ(eρj )

)
⊆ {ρi} ∩ {ρj} = ∅.

Lemma 16.3(b) now shows τ(eρi)(Im τ(eρj )) = {0}.
(ii) τ(g)τ(eρi) = τ(eg∗ρi)τ(g) for all i and g ∈ G. We may check the equality after restriction

to V (ρi) and Ker τ(eρi) separately. Lemma 17.2(b) shows τ(g)V (ρi) = V (g∗ρi). Hence, it
remains to check τ(g) Ker τ(eρi) ⊆ Ker τ(eg∗ρi). Note that any irreducible subquotient κ of
τ(g) Ker τ(eρi) satisfies κ 6∼= g∗ρi. Hence, JH

(
τ(eg∗ρi)τ(g) Ker τ(eρi)

)
= ∅ and Lemma 16.3(b)

shows τ(eg∗ρi)τ(g) Ker ρ(eρi) = {0}.

By (i), we obtain a decomposition

V =

l⊕
i=1

V (ρi)⊕ V ′, where V ′ =

l⋂
i=1

Ker τ(eρi).
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Now,
⊕

i V (ρi) is G-invariant by Lemma 17.2, and V ′ is G-invariant by (ii). By construction, we
have

⊕
i V (ρi) ⊆ VD and V ′ ⊆ VD′ ; for example, if κ is an irreducible subquotient of

⊕
i V (ρi),

then ρi ⊆ κ|G0 for some i, and hence κ ∈ D by Proposition 17.3(b). This implies the assertion.

Theorem 17.8. Put Rep(G)cusp =
∏
D Rep(G)D, where D runs through the cuspidal components

of Irrcusp(G), and put Rep(G)ind = Rep(G)Irr(G)rIrrcusp(G). Then

Rep(G) = Rep(G)cusp × Rep(G)ind =
∏
D

Rep(G)D × Rep(G)ind.

In other words, Irrcusp(G) splits the category Rep(G).

Proof. For each congruence subgroup Km, there are only finitely many isomorphism classes of
irreducible compact G0-representations with a non-zero Km-fixed vector by Corollary 15.10. By
Proposition 17.3, it follows that there are only finitely many cuspidal components, say, D1, . . . , Djm

which consist of all cuspidal irreducible representations with a non-zero Km-fixed vector. Clearly,
jm1 6 jm2 if m1 6 m2.

Let (V, π) ∈ Rep(G). By Proposition 17.7 and induction, we obtain a decomposition

V = Vcusp,m ⊕ Vind,m, (3.11)

where Vcusp,m =
⊕jm

i=1 VDi , and JH(Vind,m) consists of those (W,σ) ∈ Irr(G) which are either
cuspidal and satisfy WKm = {0}, or are not cuspidal.

For any m 6 m′ we have Vind,m = Vind,m′ ⊕ (Vind,m ∩ Vcusp,m′) by the very construction. Since
clearly V Kmcusp,m′ = V Kmcusp,m, we have (Vind,m ∩ Vcusp,m′)

Km ⊆ Vind,m ∩ Vcusp,m = {0}. Hence, we
deduce

V Kmind,m = V Kmind,m′ for all m 6 m′. (3.12)

Now, consider the G-invariant subspaces

Vcusp :=
⋃
m>1

Vcusp,m and Vind :=
⋂
m>1

Vind,m

of V . By construction, we have Vcusp ∈ Rep(G)cusp and Vind ∈ Rep(G)ind. For all m > 1, we have
V Kmcusp = V Kmcusp,m by (iii) and V Kmind = V Kmind,m by (3.12); so we deduce V Km = V Kmcusp ⊕ V

Km
ind . Since

V =
⋃
m>1 V

Km , we finally obtain V = Vcusp ⊕ Vind.

Corollary 17.9. Fix m > 1 and suppose that (V, π) ∈ Rep(G) is generated by V Km as a G-
representation. Then WKm 6= {0} for all cuspidal subquotients (W,σ) of (V, π).

Proof. Let (W,σ) be a cuspidal subquotient of (V, π). By Theorem 17.8, we have a decomposition
V = Vcusp ⊕ Vind, and (W,σ) is a subquotient of Vcusp. The decomposition also shows that Vcusp is
generated by V Kmcusp. In the proof of the above theorem, we showed V Kmcusp = V Kmcusp,m =

⊕jm
i=1 V

Km
Di

,
where D1, . . . , Djm are the cuspidal components consisting of cuspidal irreducible representations
with a non-zero Km-fixed vector. Since Vcusp is generated by V Kmcusp, it follows that Vcusp =

⊕jm
i=1 VDi .

Let now (E, τ) be a cuspidal irreducible subquotient of (W,σ). Then (E, τ) is an irreducible
subquotient of Vcusp and hence τ ∈ Di for some i. This implies EKm 6= {0}. If W ′ ⊆ W is a G-
invariant subspace together with a G-equivariant surjection W ′ →→ E, then (W ′)Km →→ EKm 6= {0}
is surjective by Lemma 5.8 and hence WKm ⊇ (W ′)Km 6= {0}.
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Corollary 17.10. Let P = MN be a proper parabolic subgroup of G and let (W,σ) ∈ Rep(M).
Then iGP (W,σ) does not have a cuspidal subquotient.

Proof. Write (V, π) = iGP (W,σ). By Theorem 17.8 we have a decomposition V = Vcusp ⊕ Vind such
that JH(V ) ∩ Irrcusp(G) = JH(Vcusp). We thus have to show Vcusp = {0}. By definition, we have
rGP Vcusp = {0} and hence Frobenius reciprocity (Theorem 14.3(a)) implies

HomG

(
Vcusp, i

G
P W

) ∼= HomM

(
rGP Vcusp,W

)
= {0}.

Hence, the inclusion Vcusp ↪→ iGP W is zero, which shows Vcusp = {0}.

§18. The Geometrical Lemma

Recall G = Mn for some partition n = (n1, . . . , nr) of n. Let B := P(1,...,1) ∩ G and let WG =
Σn ∩G = Σn1

× · · · × Σnr be the Weyl group of G. We fix two parabolic subgroups P = MN and
Q = LR of G, which for simplicity we assume to be standard, i.e., P and Q contain B.

Lemma 18.1. Put

WP,Q :=
{
w ∈ WG

∣∣w(L ∩B)w−1 ⊆ B and w−1(M ∩B)w ⊆ B
}
.

(a) One has G =
⊔
w∈WP,Q PwQ.

(b) If w ∈ WP,Q, then
M ∩ wQw−1 = (M ∩ wLw−1) · (M ∩ wRw−1)

is a standard parabolic subgroup in M . In particular, M ⊆ wQw−1 if and only if M ⊆ wLw−1.

Remark. We make some remarks regarding Lemma 18.1.

(i) The decomposition in (b) holds for all w ∈ WG, but M ∩ wQw−1 is standard (if and) only if
w ∈ WP,QWL.

(ii) Even for w ∈ WP,Q, the parabolic subgroup wQw−1 ⊆ G need not be standard.

Example. Let G = GL3(F ), P = P(2,1), M = M(2,1), and put t =
(

1
0 1
1 0

)
.

Then WP,P = {t, 1}, and neither tP t−1 =
( ∗ ∗ ∗

0 ∗ 0
∗ ∗ ∗

)
nor tMt−1 =

(
∗ 0 ∗
0 ∗ 0
∗ 0 ∗

)
are standard.

Sketch of the proof of Lemma 18.1. Part (a) is [Car85, Proposition 2.8.1(iii)]. For ease of notation,
we assume throughout that G = GLn(F ). We will be using the following elementary facts:

– W ∼= Σn is generated by the transpositions sj , defined by sj(j) = j + 1, sj(j + 1) = j, and
sj(i) = i whenever i /∈ {j, j+1}. Put S := {s1, . . . , sn−1}. For each partition n = (n1, . . . , nr),
the Weyl group WMn

is generated by SMn
= S ∩Mn.

– For each w ∈ W, denote inv(w) := {(i, j) | i < j and w(i) > w(j)} the set of inversions. The
number `(w) := # inv(w) is called the length of w. If (j, j + 1) is an inversion of w, then the
map

inv(w) r {(j, j + 1)}
∼=−→ inv(wsi),

(i1, i2) 7−→ (sj(i1), sj(i2))
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is bijective; in particular, # inv(w) = # inv(wsj) + 1. By induction, we deduce that `(w) is
the smallest integer r such that there exist 1 6 j1, . . . , jr 6 n− 1 with w = sj1 · · · sjr .

– For each 1 6 i 6= j 6 n, put U(i,j) := {eij(λ) |λ ∈ F}, where eij(λ) is an elementary matrix (see
the proof of the Bruhat decomposition 12.9). Then inv(w) is the set of those pairs (i, j) with
U(i,j) ⊆ B and wU(i,j)w

−1 ⊆ B. Moreover, U is generated as a group by U(1,2), . . . , U(n−1,n).

Note that, since B ⊆ P and B ⊆ Q, each double coset PgQ is a union of cosets of the form BwB,
where w ∈ WG, by the Bruhat decomposition 12.9. Hence, there exists a subset X ⊆ WG such that
G =

⊔
w∈X PwQ.

We first argue that X is a representing system for WM\WG/WL. Observe that WG ∩ P =WM .
The Bruhat decomposition 12.9 implies P = BWMB. Similarly, we have Q ∩ WG = WL and
Q = BWLB. For each w ∈ WG, we thus need to show

BWMBwBWLB ⊆ BWMwWLB.

This follows inductively from the following fact:

Fact. For each 1 6 j 6 n − 1 and w ∈ W, one has sjBw ⊆ BsjwB t BwB and symmetrically,
wBsj ⊆ BwsjB tBwB.

Proof of the fact: We only prove the first inclusion. The second follows from the first by passing to
inverses. Put B′ := wBw−1. Then it suffices to show sjB ⊆ BsjB

′ t BB′. Let e1, . . . , en be the
standard basis of Fn and denote Gj ⊆ G = GLn(F ) the subgroup of elements which fix ei, whenever
i /∈ {j, j + 1}, and which stabilize Fej + Fej ; then Gj ∼= GL2(F ). One easily checks sj ∈ Gj and
GjB = P(1,...,1,2,1,...,1) = BGj , where the 2 is in the j-th spot. Hence, sjB ⊆ BGj , and it remains
to prove

Gj ⊆ (B ∩Gj)sj(B′ ∩Gj) t (B ∩Gj)(B′ ∩Gj). (3.13)

Note that B2 := B ∩ Gj corresponds to the group of upper triangular matrices in GL2(F ). If
w−1(j) < w−1(j + 1), then U(j,j+1) ⊆ wBw−1 and hence B′ ∩ Gj = B2. Otherwise, one has
U(j+1,j) ⊆ wBw−1 and hence B′ ∩Gj =: B2 corresponds to the group of lower triangular matrices
in GL2(F ). By the Bruhat decomposition 12.9, we have Gj = B2 tB2sjB2. Multiplying from the
right with s−1

j , we deduce Gj = B2sjB2 tB2B2, which proves (3.13).

We now know that X is a representing system for WM\WG/WL. We choose X such that each
w ∈ X has minimal length inWMwWL. We claim X =WP,Q. Let w ∈ X. For each j with sj ∈ SL,
we then have w(j) < w(j + 1), because otherwise wsj would be a representative of WMwWL of
smaller length than w. Hence, wU(j,j+1)w

−1 ⊆ B and then, since L∩U is generated by the U(j,j+1)

with sj ∈ SL, also w(L ∩ B)w−1 ⊆ B. A similar argument shows w−1(M ∩ B)w ⊆ B, whence
X ⊆ WP,Q.

In order to prove WP,Q ⊆ X, it suffices to show that WMwWL ∩WP,Q contains at most one
element, for all w ∈ WG. This is the content of the following claim.

Claim 1. Let v, w ∈ WP,Q and x ∈ WM , y ∈ WL with xv = wy.

(i) One has x = 1 if and only if y = 1.

(ii) If x 6= 1, there exists sj ∈ v−1SMv ∩ SL such that `(xsv(j)) < `(x) and `(ysj) < `(y).

(iii) One has v = w.
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(iv) WM ∩ wWLw
−1 is generated as a group by SM ∩ wSLw−1.

Proof of the claim. Note that WP,Q is the set of all w ∈ WG with w(j) < w(j + 1) for all j with
sj ∈ SL, and w−1(i) < w−1(i+ 1) for all i with si ∈ SM ; this follows from the fact that L∩B (resp.
M ∩B) is generated by T and the U(j,j+1) with sj ∈ SL (resp. by T and the U(i,i+1) with si ∈ SM ).

We first prove (i). Let x = 1 and assume for a contradiction that y 6= 1. Then there exists
sj ∈ SL such that y(j) > y(j + 1). Note that U(y(j),y(j+1)) = yU(j,j+1)y

−1 ⊆ L ∩ B and hence
w ∈ WP,Q implies v(j) = wy(j) > wy(j + 1) = v(j + 1), which contradicts v ∈ WP,Q. This shows
that x = 1 implies y = 1. A similar argument shows the reverse implication.

We now prove (ii). Assume x 6= 1. By (i) we have y 6= 1. Hence, there exists sj ∈ SL such that
y(j) > y(j+1). Then clearly `(ysj) < `(y). Since v, w ∈ WP,Q, we have v(j) < v(j+1) and xv(j) =
wy(j) > wy(j + 1) = xv(j + 1). Therefore, (v(j), v(j + 1)) is an inversion of x. But since x ∈ WM ,
we deduce U(v(j),v(j+1)) ⊆M ∩B. We claim v(j + 1) = v(j) + 1, which then implies sv(j) ∈ SM and
`(xsv(j)) < `(x): Indeed, if we had v(j) < i < v(j+ 1) for some i, then U(v(j),i), U(i,v(j+1)) ⊆M ∩B,
and then v ∈ WP,Q implies j = v−1(v(j)) < v−1(i) < v−1(v(j + 1)) = j + 1, a contradiction. This
finishes the proof (ii).

We prove (iii) by induction on `(x). If x = 1, then y = 1 by (i), and hence v = w. Let now x 6= 1.
By (ii) there exists sj ∈ v−1SMv ∩ SL such that `(x′) < `(x) and `(y′) < `(y), where x′ := xsv(j)

and y′ := ysj . Since sv(j) = vsjv
−1, we compute

x′v = xsv(j)v = xvsj = wysj = wy′.

By the induction hypothesis, we conclude v = w.
The same argument proves (iv). DenoteW ′ the group generated by SM ∩wSLw−1. Let x ∈ WM

and y ∈ WL such that x = wyw−1 ∈ WM ∩ wWLw
−1. We show x ∈ W ′ by induction on `(x).

If `(x) = 0, there is nothing to show. If x 6= 1, then also y 6= 1 by (ii). Therefore, we find
sj ∈ w−1SMw ∩ SL such that for x′ := xsw(j) and y′ := ysj , we have `(x′) < `(x) and `(y′) < `(y).
As before, we deduce x′ = wy′w−1 ∈ WM ∩ wWLw

−1. By the induction hypothesis, we have
x′ ∈ W ′ and hence also x = x′sw(j) ∈ W ′.

We now prove (b). The set SM ∩ wSLw−1 determines a partition n′. We show M ∩ Pn′ =
M ∩wQw−1. Since w ∈ WP,Q, we have w−1(M ∩B)w ⊆ B ⊆ Q and hence M ∩B ⊆M ∩wQw−1.
Together with Mn′ ⊆ M ∩ wLw−1, we deduce M ∩ Pn′ ⊆ M ∩ wQw−1. Moreover, we have
WG ∩M ∩ wQw−1 = WM ∩ wWLw

−1 = WMn
by Claim 1(iv). The Bruhat decomposition 12.9

shows the reverse inclusion:

M ∩ wQw−1 =
⊔

v∈WM
n′

(M ∩B)v(M ∩B) ⊆M ∩ Pn′ .

Let now i < j such that U(i,j) ⊆ M ∩ wLw−1. Then M ∩ wLw−1 also contains U(j,i) and the
computation (

1 1
0 1

)
·
(

1 0
−1 1

)
·
(

1 1
0 1

)
=

(
0 1
−1 0

)
shows that the transposition which interchanges i and j belongs to WM ∩ wWLw

−1 =WMn′ . But
this implies U(i,j) ⊆Mn′ . The contrapositive shows M ∩ Un′ ⊆M ∩ wRw−1. Now,

M ∩ wQw−1 = M ∩ Pn′ = Mn′ · (M ∩ Un′) ⊆ (M ∩ wLw−1) · (M ∩ wRw−1) ⊆M ∩ wQw−1.

Hence, we have equality throughout, and Mn′ = M ∩ wLw−1 and M ∩ Un′ = M ∩ wRw−1.
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Compare the following theorem with the Mackey decomposition 9.5.

Theorem 18.2 (Geometrical Lemma). Let (W,σ) ∈ Rep(M). There exist an ordering WP,Q =
{w1, . . . , wl} and a filtration

{0} = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fl = rGQ iGP (W,σ)

by L-invariant subspaces together with L-equivariant isomorphisms

Fi/Fi−1
∼= iL

w−1
i Pwi∩L w

−1
i∗ rM

M∩wiQw−1
i

(W,σ), for all 1 6 i 6 l.

Sketch of the proof. A detailed proof can be found in [Ren10, VI.5.1]. We briefly explain how to
construct the filtration. Let P × Q act on G via (x, y) · g := xgy−1. For every P × Q-invariant
subset Y ⊆ G and each (E, τ) ∈ Rep(P ) we put

indYP (E, τ) :=

f : Y → E

∣∣∣∣∣∣
f(gy) = τ(g)f(y) for all g ∈ P , y ∈ Y ,
f is locally constant, and
the image of Supp f in P\Y is compact

 ∈ Rep(Q).

Choose an ordering WP,Q = {w1, . . . , wl} such that the subsets

Yi :=

i⊔
j=1

PwjQ ⊆ G

are open, for all 1 6 i 6 l. For (W,σ) ∈ Rep(M), the filtration in the assertion is then given by

Fi := JR
(
δ
−1/2
Q ⊗ indYiP (δ

1/2
P ⊗ InfMP σ)

)
⊆ iGP σ for 1 6 i 6 l.

Let us now sketch the argument for why we have Fi/Fi−1
∼= iL

w−1
i Pwi∩L w

−1
i∗ rM

M∩wiQw−1
i

(W,σ). To
lighten the notation, we write Y := Yi−1, Y ′ := Yi and w := wi.

Claim 1. (a) We have a short exact sequence

0 −→ indYP W −→ indY
′

P W −→ indPwQP W −→ 0,

where the first and second maps are given by extension by zero and restriction of functions,
respectively.

(b) The map

indPwQP σ
∼=−→ indQw−1Pw∩Q w

−1
∗ σ|P∩wQw−1 ,

f 7−→ [q 7→ f(wq)]

is a Q-equivariant isomorphism.
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(c) Write P ′ = w−1Pw and denote the projection map W → JP ′∩R(W ) by v 7→ v. Let δ :=
(δR)|P ′∩Q ⊗ δ−1

P ′∩R, which is a smooth character of P ′ ∩Q.4 The map

JR indQP ′∩Q σ
∼=−→ indLP ′∩L

(
δ ⊗ JP ′∩R(σ)

)
,

f 7−→
[
g 7→

∫
(P ′∩R)\R

f(xg) dν(x)
]

is an L-equivariant isomorphism. Here, ν denotes a semi-invariant Haar measure on the space
(P ′ ∩R)\R.

Proof of the claim. Part (b) is proved in the same way as (2.12) in the proof of the Mackey decom-
position 9.5. For the support conditions, one has to check that the inclusion Q ↪→ w−1PwQ and mul-
tiplication w−1PwQ

w·−→ PwQ induce homeomorphisms w−1Pw ∩Q\Q
∼=−→ w−1Pw\w−1PwQ

∼=−→
P\PwQ on the right coset spaces (which come equipped with the quotient topologies).

If Z ⊆ G is any P ×Q-invariant subset, the multiplication map

C∞c (P\Z)⊗C W
∼=−→ indZP W,

f ⊗ v 7−→ [z 7→ f(z)v]

is a C-linear isomorphism, where C∞c (P\Z) is the space of all locally constant functions P\Z → C
(which we also view as functions Z → C which are invariant under left translation by P ) with
compact support; see the proof of (2.6). Hence, the sequence in (a) arises from the sequence

0 −→ C∞c (P\Y ) −→ C∞c (P\Y ′) −→ C∞c (P\PwQ) −→ 0 (3.14)

by applying the exact functor _⊗C W . Hence, it suffices to show that (3.14) is exact. Exactness
on the left and in the middle are clear, so it remains to prove that the restriction of functions
yields a surjective map C∞c (P\Y ′) → C∞c (P\PwQ). So let f : P\PwQ → C be locally constant
with compact support. We find a compact open subgroup H ⊆ G and {zj}j∈J ⊆ G such that
G =

⊔
j∈J PzjH and f is constant with value, say, cj on the subsets PzjH ∩ PwQ; we put cj := 0

if PzjH ∩ PwQ = ∅. Since f has compact support, only finitely many of the cj are non-zero. Let
now f ′ : Y ′ → C be the function which is constant on PzjH with value cj , for all j ∈ J . Then f ′
lies in C∞c (Y ′) and satisfies f ′|PwQ = f .

For part (c), we refer to [Cas95, Proposition 6.2.1]. We fix left invariant Haar measures µR
and µP ′∩R on R and P ′ ∩ R, respectively. Let ν : C∞c ((P ′ ∩ R)\R, θ = 1) → C be the associated
semi-invariant Haar measure; note that the modulus characters of R and P ′ ∩ R are trivial, since
both groups are unions of its compact open subgroups (Example 11.1). For each C-vector space E
on which R acts trivially, we obtain an E-valued Haar measure

C∞c
(
(P ′ ∩R)\R,E

) ∼= C∞c
(
(P ′ ∩R)\R

)
⊗C E

ν⊗idE−−−−→ E,

which we again denote ν. We observe the following properties of ν:

4In fact, we need to extend the notion of modulus character a bit: for each g ∈ Q denote conjg : R → R,
x 7→ gxg−1 the conjugation by g. Then µ′R(f) := µR(f ◦ conj−1

g ) defines another left invariant Haar measure on R,
and hence µ′R = δR(g)µR for some δR(g) ∈ R>0. It is easy to see that δR : Q→ R×>0 is a smooth character. Similarly,
we extend δP ′∩R to a smooth character P ′ ∩Q→ R×>0.
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– Let g ∈ P ′ ∩ L and denote conjg : R → R, x 7→ gxg−1. Then conjg(P
′ ∩ R) = P ′ ∩ R, and

ν′(f) := ν(f ◦ conj−1
g ) defines another semi-invariant Haar measure. Hence, there exists a

scalar δ(P ′∩R)\R(g) ∈ C× such that ν′ = δ(P ′∩R)\R(g) · ν.
Exercise: show that δ(P ′∩R)\R(g) = δ(g) = δR(g)δP ′∩R(g)−1.

– If α : E → E is a C-linear automorphism, then ν(α ◦ f) = α(ν(f)).

We check that the map

indQP ′∩Q(W,σ) −→ InfLQ indLP ′∩L
(
δ ⊗ JP ′∩R(W,σ)

)
,

f 7−→ f :=
[
g 7→

∫
(P ′∩R)\R

f(xg) dν(x)
]

is well-defined. Let f ∈ indQP ′∩QW . For each g ∈ Q, the map R→ JP ′∩R(W ), x 7→ f(xg) is locally
constant with compact support modulo P ′ ∩R, and lies in C∞c ((P ′ ∩R)\R, JP ′∩R(W )). Hence, the
integral

∫
(P ′∩R)\R f(xg) dν(x) is well-defined for each g. Since ν is right invariant with respect to

R, the integral depends only on the image of g in Q/R ∼= L; in particular, R acts trivially on f
under right translation. For each y ∈ P ′ ∩ L and g ∈ L we compute

f(yg) =

∫
(P ′∩R)\R

f(xyg) dν(x) =

∫
(P ′∩R)\R

σ(y)f(y−1xy · g) dν(x)

= δ(y)JP ′∩R(σ)(y)

∫
(P ′∩R)\R

f(xg) dν(x) = (δ ⊗ JP ′∩R(σ))(y)f(g).

Note that f is locally constant and has compact support modulo P ′ ∩ L. We deduce that f lies in
InfLQ indLP ′∩L

(
δ ⊗ JP ′∩R(W,σ)

)
. It is clear that the map f 7→ f is Q-linear and hence induces an

L-equivariant map

Φ: JR indQP ′∩Q(W,σ) −→ indLP ′∩L
(
δ ⊗ JP ′∩R(W,σ)

)
.

We show that Φ is surjective: It suffices to exhibit a generating set of indLP ′∩L(δ ⊗ JP ′∩R(σ))
which lies in the image of Φ. For any triple (w, g,K), where K ⊆ L is a compact open subgroup,
g ∈ L, and w ∈ JP ′∩R(W )(P ′∩L)∩gKg−1

, we denote fw,g,K : L → JP ′∩R(W ) the function with
support (P ′ ∩ L)gK given by

fw,g,K(xgk) := δ(x)JP ′∩R(σ)(x)w,

for all x ∈ P ′ ∩ L and k ∈ K. (Check that xgk = x′gk′ implies fw,g,K(xgk) = fw,g,K(x′gk′), which
requires that w is fixed by (P ′ ∩ L) ∩ gKg−1.) It is clear that the fw,g,K , where K runs through a
fundamental system of compact open subgroups, span indLP ′∩L(δ ⊗ JP ′∩R(W )) as a C-vector space.
Let K0 ⊆ Q be a compact open subgroup with image K in L. It remains to show that fw,g,K
lies in the image of Φ. The image of P ′ ∩ Q ∩ gK0g

−1 in L then coincides with P ′ ∩ L ∩ gKg−1.
Since the quotient map W → InfP

′∩L
P ′∩Q JP ′∩RW is surjective and taking P ′ ∩Q ∩ gK0g

−1-invariants
is exact by Lemma 5.8, we may pick a lift w0 ∈ WP ′∩Q∩gK0g

−1

of w. Consider now the function
f : Q → W with support (P ′ ∩ Q)gK0 given by f(xgk) = σ(x)w0 for all x ∈ P ′ ∩ Q and k ∈ K0.
We claim Φ(f) = c · fw,g,K for some c > 0. Let y ∈ R with yg ∈ (P ′ ∩Q)gK0, and pick x ∈ P ′ ∩Q
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and k ∈ K0 such that yg = xgk. Denoting prL : Q → Q/R ∼= L the projection, we compute
g = prL(yg) = prL(xgk) = prL(x)g prL(k), and hence prL(x) ∈ (P ′ ∩ L) ∩ gKg−1. We deduce

f(yg) = f(xgk) = σ(x)w0 = JP ′∩R(σ)(x)w = JP ′∩R(σ)(prL(x))w = w.

Therefore, Φ(f)(g) =
∫

(P ′∩R)\R f(xg) dν(x) = c · w, where c = ν(P ′∩R)\R(1R∩(P ′∩Q)gK0g−1) > 0.
Moreover, it is clear from the definition that Φ(f) is fixed by K and that the support of Φ(f) is
(P ′ ∩ L)gK. It follows that Φ(f) = c · fw,g,K , which shows that Φ is surjective.

It remains to prove that Φ is injective. We need the following claim:

Claim 2. Recall the left Haar measure µR : C∞c (R)→ C on R.

(a) Let R0 ⊆ R and K ⊆ Q be compact open subgroups. Then K normalizes a compact open
subgroup R1 ⊆ R containing R0.

(b) Let f ∈ indQP ′∩QW . For each g ∈ Q we define fg ∈ C∞c (R,W ) as fg(x) := f(gx). Then
f ∈ (indQP ′∩QW )(R) if and only if for every g ∈ Q there exists a compact open subgroup
Rg ⊆ R such that ρ(eRg )fg = 0.

Proof of the claim: We first show (a). The subset X :=
⋃
k∈K kR0k

−1 ⊆ R is compact as the image
of the map K ×R0 → R, (k, x) 7→ kxk−1. Let R′0 ⊆ R be a compact open subgroup containing X
(which is possible by Remark 12.16). Then R1 :=

⋂
k∈K kR

′
0k
−1 is a compact subgroup normalized

by K. By construction, R1 contains R0 and hence is open.

We prove (b). Suppose f ∈ (indQP ′∩QW )(R). Since R is the union of its compact open subgroups,
we find a compact open subgroup R0 ⊆ R with f ∈ (indQP ′∩QW )(R0). By Lemma 7.8, we find
ρ(eR0

)fg =
(
ρ(eR0

)f
)
(g) = 0.

We now prove the converse direction. Let K ⊆ Q be a compact open subgroup fixing f .
As f has compact support, we find g1, . . . , gr ∈ Q with Supp(f) =

⊔r
i=1(P ′ ∩ Q)giK. By (a),

applied to a compact open subgroup R0 containing Rg1 , . . . , Rgr , we find a compact open subgroup
R1 ⊆ R which is normalized by K and contains Rgi for all i. Then ρ(eR1

)fgi = ρ(eR1
∗ eRgi )fgi =

ρ(eR1)ρ(eRgi )fgi = 0 for all i, where we have used Proposition 7.4(a) for the first equality. Let now
g ∈ Q be arbitrary. If f(gz) = 0 for all z ∈ R1, then ρ(eR1)fg = 0. Otherwise, we find z ∈ R1,
x ∈ P ′ ∩ Q, k ∈ K, and 1 6 i 6 r such that gz = xgik. Since K normalizes R1 and fixes f , and
because µR is left invariant, we compute

vol(R1;µR) · ρ(eR1
)fg =

∫
R

f(xgikz
−1y)1R1

(y) dµR(y) =

∫
R

f(xgiky)1R1
(zy) dµR(y)

= σ(x)

∫
R

f(gikyk
−1)1R1

(y) dµR(y)

= δR(k)−1σ(x)

∫
R

f(giy)1R1(k−1yk) dµR(y)

= δR(k)−1σ(x)ρ(eR1)fgi = 0.

This shows ρ(eR1
)f = 0 and hence f ∈ (indQP ′∩QW )(R1) ⊆ (indQP ′∩QW )(R) by Lemma 7.8.
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Let now f ∈ indQP ′∩QW with f = 0, and let g ∈ Q be fixed but arbitrary. The function
(ρ(g)f)|R has compact support, and hence we find a compact open subgroup R0 ⊆ R such that
Supp(ρ(g)f)|R ⊆ (P ′ ∩R)R0. By the definition of ν we compute∫

R

f(xg)1R0
(x) dµR(x) =

∫
(P ′∩R)\R

∫
P ′∩R

f(xyg)1R0
(xy) dµP ′∩R(x)dν(y)

=

∫
(P ′∩R)\R

∫
P ′∩R

f(yg)1R0
(xy) dµP ′∩R(x)dν(y)

=

∫
(P ′∩R)\R

vol(P ′ ∩R0y
−1;µP ′∩R) · f(yg) dν(y)

= vol(P ′ ∩R0;µP ′∩R)f(g) = 0,

where for the fourth equality we have used Supp(ρ(g)f)|R ⊆ (P ′∩R)R0 and that, for y1 ∈ P ′∩R and
y2 ∈ R0, we have vol(P ′∩R0(y1y2)−1) = vol(P ′∩R0y

−1
1 ) = δP ′∩R(y1)−1 vol(P ′∩R0) = vol(P ′∩R0),

since P ′ ∩R is unimodular. We deduce

vol(g−1R0g µR) · ρ(eg−1R0g)fg =

∫
R

f(gx)1g−1R0g(x) dµR(x)

=

∫
R

f(gxg−1 · g)1R0(gxg−1) dµR(x)

= δR(g−1)

∫
R

f(xg)1R0
(x) dµR(x) ∈W (R).

As R is the union of its compact open subgroups, we find Rg ⊆ R containing g−1R0g, and such that
ρ(eg−1R0g)fg ∈ W (R1). We now have ρ(eRg )fg = ρ(eRg )ρ(eg−1R0g)fg = 0. Hence, the criterion in
Claim 2(b) is satisfied and shows f ∈ (indQP ′∩QW )(R). This shows that Φ is injective and finishes
the proof of (c).

Using Claim 1, we now compute

Fi/Fi−1
∼= JR

(
δ
−1/2
Q ⊗ indPwiQP (δ

1/2
P ⊗ InfMP σ)

)
(Claim (a))

∼= JR
(
δ
−1/2
Q ⊗ indQ

w−1
i Pwi∩Q

w−1
i∗ δ

1/2
P ⊗ w−1

i∗ InfMP σ
)

(Claim (b))

∼= indL
w−1
i Pwi∩L

(
δ
−1/2
Q ⊗ w−1

i∗ δ
1/2
P ⊗ δ ⊗ w−1

i∗ JP∩wiRw−1
i

(InfMP σ)
)

(Claim (c))

∼= indL
w−1
i Pwi∩L

(
δ
−1/2
Q ⊗ w−1

i∗ δ
1/2
P ⊗ δ ⊗ Inf

w−1
i Mwi∩L

w−1
i Pwi∩L

w−1
i∗ JM∩wiRw−1

i
(σ)
)
,

where δ = δ(w−1
i Pwi∩L)R ⊗ δ

−1

w−1
i Pwi∩Q

, viewed as a character of w−1
i Pwi ∩ L. One finally needs to

show that

δ
−1/2
Q ⊗ w−1

i∗ δ
1/2
P ⊗ δ = δ

1/2

w−1
i Pwi∩L

⊗ δ−1/2

w−1
i Mwi∩Q

,

from which we obtain Fi/Fi−1
∼= iL

w−1
i Pwi∩L w

−1
i∗ rM

M∩wiQw−1
i

(σ).
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§19. Finiteness Theorems

Recall G = Mn for some partition n = (n1, . . . , nr) of n. Recall from Theorem 14.3(d)/(c) that the
functor iGP preserves admissibility and rGP preserves finite generation. In this section, we will show
that iGP preserves finite length, and rGP preserves admissibility and finite length.

Theorem 19.1. Let P = MN be a parabolic subgroup of G, and let (W,σ) ∈ Rep(M) have finite
length. Then iGP (W,σ) has finite length.

Proof. Let g ∈ G such that gPg−1 is standard. The map

iGP (W,σ) −→ iGgPg−1(W, g∗σ),

f 7−→ [γ 7→ f(g−1γ)]

is clearly an isomorphism. Hence, we may assume from the start that P is standard.
Since iGP is exact by Theorem 14.3(b), we may assume that (W,σ) is irreducible.
By Lemma 15.2 there exists a proper parabolic subgroup Q = LR of M and a cuspidal repre-

sentation (E, τ) ∈ Rep(L) such that (W,σ) ⊆ iMQ (E, τ). Note that QN is a parabolic subgroup of
G with Levi L and unipotent radical RN . Now, Theorem 14.3(e) shows iGP (W,σ) ⊆ iGP iMQ (E, τ) ∼=
iGQN (E, τ). It suffices to show that iGQN (E, τ) has finite length, and hence we may assume from the
start that (W,σ) is irreducible and cuspidal.

We prove the assertion by descending induction on r. If r = n, then n = (1, 1, . . . , 1) so that
G = T , and there is nothing to show. Assume now r < n. Denote P1, . . . , Pn−r the maximal
parabolic subgroups of G with Levi subgroups M1, . . . ,Mn−r, respectively; note that each Mj

is of the form Mn′ , where n′ = (n1, . . . , na−1,m, na − m,na+1, . . . , nr) for some 1 6 a 6 r and
1 6 m < na. In particular, the induction hypothesis is applicable for each Mj . By the Geometrical
Lemma 18.2, and because (W,σ) is cuspidal, rGPj i

G
P W has a finite filtration with graded pieces of

the form
i
Mj

w−1Pw∩Mj
(W,w−1

∗ σ), (3.15)

where w ∈
{
w ∈ WP,Pj

∣∣M ⊆ wMjw
−1
}
. By the induction hypothesis, each representation (3.15)

has finite length. It follows that rGPj i
G
P (W,σ) has finite length, say lj , for all j = 1, . . . , n− r.

Write (V, π) := iGP (W,σ), and let {0} = V0 ( V1 ( · · · ( Vl = V be a finite filtration. As each
rGPj is exact (Theorem 14.3(b)), we obtain for all j a filtration

{0} ⊆ rGPj V1 ⊆ rGPj V2 ⊆ · · · ⊆ rGPj Vl = rGPj i
G
P W.

For each 1 6 i 6 l, Corollary 17.10 shows that Vi/Vi−1 is not cuspidal; hence, there exists j such
that rGPj (Vi)/ r

G
Pj

(Vi−1) ∼= rGPj (Vi/Vi−1) 6= {0}. It follows that l 6 l1 + · · · + ln−r, hence iGP (W,σ)
has finite length.

Theorem 19.2 (Jacquet’s Lemma). Let P = MN be a parabolic subgroup of G and let (V, π) ∈
Rep(G) be admissible. For every m > 1 the projection prN : V →→ JN (V ) induces a surjection
V Km →→ JN (V )Km∩M .
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Proof. Fix λ ∈ Λ++(M,G) (see Notation 12.14) and put K−m = Km ∩ N , K0
m = Km ∩M and

K+
m = Km ∩N , see Proposition 12.15. It is clear that prN (V Km) ⊆ JN (V )K

0
m . For each l > 0, we

have a decomposition
Hl := Km ∩ λlKmλ

−l = K−mK
0
m(λlK+

mλ
−l).

Since also Km = K+
mK

0
mK

−
m, the inclusion K+

m/λ
lK+

mλ
−l ↪→ Km/Hl is bijective. Now, for all

v ∈ V λ−lHlλl , we have π(eKm)π(λl)v = 1
[Km:Hl]

∑
u∈K+

m/λlK
+
mλ−l

π(uλl)v ∈ V Km , and hence, since
N acts trivially on JN (V ),

πN (λ)l prN (v) = prN
(
π(eKm)π(λl)v

)
∈ prN (V Km). (3.16)

As V Km ⊆ V λ
−lHlλ

l

, it follows that πN (λ)l prN (V Km) ⊆ prN (V Km). Since V is admissible,
prN (V Km) is finite dimensional, and hence πN (λ) is invertible on prN (V Km). We deduce

πN (λ)l prN
(
V Km

)
= prN

(
V Km

)
for all l ∈ Z. (3.17)

Let v ∈ JN (V )K
0
m = JN (V )K

0
mK

+
m . Since (_)K

0
mK

+
m is exact by Lemma 5.8, we find v ∈ V K0

mK
+
m

with prN (v) = v. Using Proposition 12.15, we see that v is fixed by λ−lK−mλl for some l > 0, and
hence v ∈ V λ−lHlλl . By (3.16), we find

πN (λ)lv = prN
(
π(eKm)π(λl)v

)
∈ prN (V Km),

and from (3.17) we deduce v ∈ πN (λ)−l prN (V Km) = prN (V Km).

Corollary 19.3. Let (V, π) ∈ Rep(G) be admissible. For each parabolic subgroup P = MN of G,
the representation rGP (V, π) ∈ Rep(M) is admissible.

Proof. Immediate from Theorem 19.2.

Lemma 19.4. Let P = MN be a standard parabolic subgroup of G. Let (V, π) ∈ Rep(G) and
suppose that V is generated by V Km for some m > 1. Then JN (V ) is generated by JN (V )Km∩M as
an M -representation.

Proof. By the Iwasawa decomposition 12.7 we have G = PK. As Km is a normal subgroup in
K, we have π(k)V Km = V Km for all k ∈ K, and hence it follows that V Km generates V as
a P -representation. The image of V Km under the P -equivariant surjection V → JN (V ) lies in
JN (V )Km∩M . As N acts trivially on JN (V ) and P/N ∼= M , the claim follows.

Proposition 19.5. Suppose (V, π) ∈ Rep(G) is generated by V Km for some m > 1. Then every
subquotient (W,σ) of (V, π) is generated by WKm .

Proof. Step 1: We show WKm 6= {0} for all non-zero subquotients (W,σ) of (V, π). There exists
a (not necessarily proper) parabolic subgroup P = MN of G such that rGP (W,σ) is cuspidal. By
Lemma 19.4, rGP (V, π) is generated by itsKm∩M -fixed vectors. Since rGP is exact by Theorem 14.3(b),
rGP (W,σ) is a cuspidal subquotient of rGP (V, π). Hence, Corollary 17.9 shows rGP (W,σ)Km∩M 6= {0}.
By Jacquet’s Lemma 19.2, the map WKm →→ JN (W )Km∩M 6= {0} is surjective. Hence WKm 6= {0}.

Step 2: Let (W,σ) be a subquotient of (V, π), and let W ′ ⊆ W be the subrepresentation
generated by WKm . By construction, we have (W ′)Km = WKm . As Km is exact by Lemma 5.8, we
deduce (W/W ′)Km = {0}. As W/W ′ is a subquotient of (V, π), Step 1 implies W/W ′ = {0}, that
is, W ′ = W .
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Theorem 19.6 (Howe). Let (V, π) ∈ Rep(G). Then (V, π) is finitely generated and admissible if
and only if (V, π) has finite length.

Proof. Suppose (V, π) has finite length, say l. We show by induction on l that (V, π) is finitely
generated and admissible. If l = 1, then (V, π) is generated by any non-zero vector and is admissible
by Theorem 15.4. If l > 1, we find a G-invariant subspace W ⊆ V such that W and V/W have
length < l. By induction hypothesis, W and V/W are finitely generated and admissible. From the
short exact sequence 0 → W → V → V/W → 0 it follows easily that V is finitely generated. For
each open subgroup H ⊆ G we have an exact sequence

0 −→WH −→ V H −→ (V/W )H ,

where WH and (V/W )H are finite dimensional by induction hypothesis so that also V H is finite
dimensional. Therefore, (V, π) is admissible.

Suppose now that (V, π) is admissible and finitely generated by, say, v1, . . . , vl. Fix m > 1 such
that v1, . . . , vl ∈ V Km . Let now

{0} = V0 ( V1 ( V2 ( · · · ( Vs = V

be a filtration by G-invariant subspaces. From Proposition 19.5 (and Lemma 5.8) we deduce

{0} ( V Km1 ( V Km2 ( · · · ( V Kms = V Km

(because V Kmi /V Kmi−1 = (Vi/Vi−1)Km 6= {0} for all i). Since, V is admissible, we have s 6 dimV Km <
∞. Hence, V has finite length.

Corollary 19.7. Suppose (V, π) ∈ Rep(G) has finite length. Let P = MN be a parabolic subgroup
of G. Then rGP (V, π) ∈ Rep(M) has finite length.

Proof. By Theorem 19.6, we have to show that if (V, π) is admissible and finitely generated, then
rGP (V, π) is admissible and finitely generated. But this is Corollary 19.3 and Theorem 14.3(c).

§20. Cuspidal Data

Recall G = Mn for some partition n = (n1, . . . , nr) of n. We have obtained in Theorem 17.8 a
decomposition

Rep(G) = Rep(G)cusp × Rep(G)ind.

Our aim in this section is to describe Rep(G)ind in terms of cuspidal representations of Levi subgroups
of G.

Definition 20.1. A cuspidal datum is a pair (M,ρ), where M ⊆ G is a Levi subgroup and ρ ∈
Irrcusp(M). We say two cuspidal data (M,ρ) and (M ′, ρ′) are associated , and write (M,ρ) ∼ (M ′, ρ′)
if there exists g ∈ G such that

gMg−1 = M ′ and g∗ρ ∼= ρ′ in Rep(M ′).

The relation ∼ is an equivalence relation. We denote (M,ρ)G the equivalence class of (M,ρ) and
put

Ω(G) := set of equivalence classes (M,ρ)G of cuspidal data.
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Lemma 20.2. Let π ∈ Irr(G). There exists a standard parabolic subgroup P = MN of G and a
cuspidal datum (M,ρ) such that π ↪→ iGP ρ.

Proof. This is Lemma 15.2.

Theorem 20.3. Let P = MN , Q = LR, and Q′ = L′R′ be parabolic subgroups of G, and let (L, σ)
and (L′, σ′) be cuspidal data. Fix (V, π) ∈ Rep(G).

(a) Let ρ ∈ Rep(M) be a cuspidal representation. If (V, π) is a subquotient of iGP ρ and σ ∈
JH(rGQ π), then σ is a subquotient of w∗ρ for some w ∈ WG with wMw−1 = L. In particular,
if ρ is irreducible, then (L, σ) ∼ (M,ρ).

(b) Suppose (V, π) is irreducible. If σ ∈ JH(rGQ π) and σ′ ∈ JH(rGQ′ π), then (L, σ) ∼ (L′, σ′). In
particular, there exists a unique (L, σ)G ∈ Ω(G) such that π is a subrepresentation/subquotient
of iGQ σ for some parabolic subgroup Q ⊆ G with Levi L.

Proof. We first argue that (b) follows from (a). By Lemma 20.2 there exists a standard parabolic
subgroup P = MN of G and a cuspidal datum (M,ρ) such that π ↪→ iGP ρ. The hypotheses together
with (a) imply (L, σ) ∼ (M,ρ) ∼ (L′, σ′).

It remains to prove (a). Note that π(g) induces an isomorphism g∗ r
G
Q π

∼=−→ rGgQg−1 π. Replacing
(L, σ) with (gLg−1, g∗σ) if necessary, we may assume that Q is standard. As in the proof of
Theorem 19.1 we may assume that P is standard. Since rGQ is exact by Theorem 14.3(b), we have
σ ∈ JH(rGQ π) ⊆ JH

(
rGQ iGP ρ

)
. Put (E, τ) = rGQ iGP ρ, so that σ ∈ JH(Ecusp). By the Geometrical

Lemma 18.2, σ is a subquotient of(
iLw−1Pw∩L w

−1
∗ rMM∩wQw−1 ρ

)
cusp

(3.18)

for some w ∈ WP,Q. Since ρ is cuspidal, we have M ∩ wQw−1 = M and hence M ⊆ wLw−1 (see
Lemma 18.1). Corollary 17.10 shows L = w−1Pw ∩ L and hence L ⊆ w−1Mw. Together we obtain
w−1Mw = L, and (3.18) simplifies to w−1

∗ ρ, which is what we wanted to show.

Exercise. (V, π) ∈ Irr(G) is called supercuspidal if for all proper parabolic subgroups P = MN of
G and all (W,σ) ∈ Rep(M) we have π /∈ JH(iGP σ). Show that (V, π) ∈ Irr(G) is supercuspidal if
and only if it is cuspidal.

Definition 20.4. Theorem 20.3 supplies a well-defined map

Sc : Irr(G) −→ Ω(G),

π 7−→ (M,ρ)G with ρ ∈ JH(rGP π) for
some parabolic P ⊆ G with Levi M ,

called the (super)cuspidal support .
Note that Theorem 20.3 also shows that Sc(π) = (M,ρ)G if and only if π ∈ JH(iGP ρ) for some

parabolic P with Levi M .

The definition suggests that Ω(G) plays an important role in describing the category Rep(G).
We therefore need to study how strong the relation is between Irr(G) and Ω(G) as exhibited by the
map Sc. We then show that Ω(G) is naturally a disjoint union of C-varieties.
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Lemma 20.5 (Obsolete). Let (V, π) ∈ Rep(G) have finite length, and let (W,σ) ∈ Irrcusp(G) such
that W ∈ JH(V ). Then there exists a G-equivariant surjection V →→W .

Proof. By Corollary 11.14, (W,σ) is (projective and) injective in Rep(G0). Hence, if V ′ ⊆ V is a
G-invariant subspace and V ′ →→W a surjection, then the restriction map

X := HomG0(V,W )→→ HomG0(V ′,W ) =: Y

is surjective. From Y 6= {0} we deduce X 6= {0}. By Proposition 17.3, (V, π|G0) and (W,σ|G0) have
finite length. By Lemma 16.2, X is finite dimensional. Define a group action τ : G→ AutC(X) via
τ(g)f := σ(g) ◦ f ◦ π(g−1), where g ∈ G and f ∈ X. We need to show XG 6= {0}.

As G0 acts trivially on X and Y , the G-action factors through the abelian group G/G0 =
Λ(G) ∼= Zr. For each Λ(G)-representation (E, κ) and all χ ∈ X (G) we denote

Eχ :=
{
v ∈ E

∣∣ for all g ∈ Λ(G) there exists l > 0 such that (κ(g)− χ(g))lv = 0
}

the generalized eigenspace of E. If E is finite dimensional, we have a Jordan decomposition
E =

⊕
χ∈X (G)Eχ, where Eχ 6= {0} for only finitely many χ ∈ X (G). The surjectivity of ϕ implies

ϕ(Xχ) = Yχ, for all χ ∈ X (G). In particular, ϕ(X1) = Y1 6= {0}, where 1 ∈ X (G) denotes the
trivial character. This shows X1 6= {0} and hence also XG 6= {0}.

Proposition 20.6. The map Sc : Irr(G)→ Ω(G) is surjective with finite fibers.

Proof. We prove surjectivity. Let P = MN be a parabolic subgroup of G and let (M,ρ) be a cuspidal
datum. Let π be an irreducible subquotient of iGP ρ. Then Theorem 20.3 shows Sc(π) = (M,ρ)G.

We now prove that every fiber is finite. Fix (M,ρ)G ∈ Ω(G), and let (V, π) ∈ Sc−1((M,ρ)G).
By Lemma 20.2 there exists a cuspidal datum (M ′, ρ′) and a parabolic subgroup P ′ = M ′N ′ of G
such that π ⊆ iGP ′ ρ

′. Then Theorem 20.3 shows (M ′, ρ′) ∼ (M,ρ), i.e., there exists g ∈ G with
M = gM ′g−1 and ρ ∼= g∗ρ

′. Put P := gP ′g−1. We have isomorphims iGP ′ ρ′ ∼= g∗ i
G
P ′ ρ

′ ∼= iGP ρ, where
the first map is induced by the action of g−1 and the second map is given by f 7→ [γ 7→ f(g−1γ)].
Observe that P lies in the set P(M) of all parabolic subgroups of G with Levi M . We deduce that
the cardinality of Sc−1

(
(M,ρ)G

)
is bounded above by

∑
P∈P(M) `(i

G
P ρ), which is finite because

P(M) is finite by Exercise 12.12 and each iGP ρ has finite length by Theorem 19.1.

Exercise. Let M be a Levi subgroup in G and recall the set P(M) of parabolic subgroups of G with
Levi M . Fix (W,ρ) ∈ Irrcusp(M) and let P ∈ P(M).

(a) Show that for every π ∈ JH(iGP ρ) there exists Q ∈ P(M) such that π ⊆ iGQ ρ.

(b) Show that HomG(iGP ρ, i
G
Q ρ) 6= {0} for all Q ∈ P(M).

Definition 20.7. We say two cuspidal data (M,ρ), (M ′, ρ′) are inertially equivalent , written
(M,ρ) ' (M ′, ρ′), if there exist g ∈ G and χ ∈ X (M ′) such that gMg−1 = M ′ and ρ′ ∼= χ⊗ g∗ρ.

We denote [M,ρ]G the inertial equivalence class of the cuspidal datum (M,ρ) and put

B(G) := set of inertial equivalence classes [M,ρ]G of cuspidal data.

Observe that (M,ρ) ∼ (M ′, ρ′) implies (M,ρ) ' (M ′, ρ′), and hence we have a natural surjective
map

Υ: Ω(G) −→→ B(G).
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Proposition 20.8. The set Ω(G) of equivalence classes of cuspidal data is the disjoint union of
C-varieties, and the fibers of Υ are the connected components of Ω(G).

Proof. Let M be a Levi subgroup in G and consider the group W(M) := NG(M)/M . Since
π(g) : g∗ρ

∼=−→ ρ is an M -equivariant isomorphism for each g ∈ M and ρ ∈ Irrcusp(M), the action
of NG(M) on Irrcusp(M) factors through W(M). Note that by Exercise 12.12(d) the group W(M)
is finite. Recall the action of X (M) = Homgrp(M/M0,C×) on Irrcusp(M) given by χ · ρ := χ⊗ ρ
for all χ ∈ X (M) and ρ ∈ Irrcusp(M). The orbits for this action are by definition the cuspidal
components. Denote IM the set of cuspidal components so that

Irrcusp(M) =
⊔

D∈IM

D.

We now investigate the action of W(M) on Irrcusp(M). Let D ∈ IM and ρ ∈ D. Since w∗(χ⊗ ρ) ∼=
w∗χ⊗w∗ρ for all w ∈ W(M) and χ ∈ X (M), it follows that wD is a cuspidal component. Therefore,
W(M) acts on IM . Let JM ⊆ IM be a complete set of representatives for the orbit space IM/W(M).
For each D ∈ IM we denote W(D) := {w ∈ W(M) |wD = D} the stabilizer of D in W(M). Then
W(D) acts on D and we have a bijection

Irrcusp(M)/W(M) ∼=
⊔

D∈JM

D/W(D).

Each D ∈ JM is a connected C-variety (Definition 17.5), hence so is the quotient D/W(D) by a
finite group (Proposition 17.6). It follows that Irrcusp(M)/W(M) is a disjoint union of C-varieties.

Let now M1, . . . ,Ml be a complete set of representatives for the standard Levi subgroups of G
up to conjugation; then every Levi subgroup of G is conjugate to precisely one of the Mi. The
above discussion shows that the bijection

Ω(G) ∼=
l⊔
i=1

Irrcusp(Mi)/W(Mi) ∼=
l⊔
i=1

⊔
D∈JMi

D/W(D)

exhibits Ω(G) as a disjoint union of the connected C-varieties D/W(D).
Finally, let (M,ρ) be a cuspidal datum and denote D the cuspidal component containing ρ. It

is clear from the definition that Υ−1
(
[M,ρ]G

)
= D/W(D), which proves the last assertion.

Definition 20.9. The function Si : Irr(G)→ B(G), defined by the commutativity of the diagram

Irr(G) Ω(G)

B(G),

Sc

Si
Υ

is called the inertial support . Let s ∈ B(G) and let Ω = Υ−1(s) ⊆ Ω(G) be the corresponding
connected component. We put

Irrs(G) := IrrΩ(G) := Si−1(s).
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§21. The Bernstein Decomposition Theorem

Recall G = Mn for some partition n = (n1, . . . , nr) of n. We prove in this section the main result
of this lecture course.

We consider the category

Cusp(G) :=
∏

P=MN
standard parabolic

Rep(M)cusp.

The objects are tuples (WM , ρM )P , where each (WM , ρM ) is a cuspidal M -representation, and for
(WM , ρM )P , (EM , σM )P ∈ Cusp(G) we put

HomCusp(G)

(
(WM , ρM )P , (EM , σM )P

)
:=
∏
P

HomM

(
(WM , ρM ), (EM , σM )

)
.

Note that Cusp(G) is an abelian category, because kernels and cokernels of morphisms are computed
componentwise. We also consider two functors

R: Rep(G) Cusp(G) : I,

(V, π)
(
rGP (V, π)cusp

)
P
,⊕

P iGP (WM , ρM ) (WM , ρM )P .

Lemma 21.1. (a) For all (V, π) ∈ Rep(G) and (WM , ρM )P ∈ Cusp(G) we have a natural iso-
morphism

HomCusp(G)

(
R(V, π), (WM , ρM )P

) ∼= HomG

(
(V, π), I(WM , ρM )P

)
.

In other words, R is left adjoint to I.

(b) The functor R is exact and faithful, that is, for all (V, π), (V ′, π′) ∈ Rep(G) the induced map

HomG

(
(V, π), (V ′, π′)

)
−→ HomCusp(G)

(
R(V, π),R(V ′, π′)

)
is injective. If (V, π) ∈ Rep(G) is finitely generated, then each component of R(V, π) is finitely
generated.

(c) For all (V, π) ∈ Rep(G), the map

ηV : (V, π) −→ IR(V, π)

corresponding to idR(V,π) under the bijection in (a) is injective.
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Proof. In (a), we compute

HomCusp(G)

(
Rπ, (ρM )P

)
=
∏
P

HomM

(
(rGP π)cusp, ρM

)
∼=
∏
P

HomM

(
rGP π, ρM

)
(Theorem 17.8)

∼=
∏
P

HomG

(
π, iGP ρM

)
(Theorem 14.3(a))

∼= HomG

(
π,
⊕
P

iGP ρM

)
= HomG

(
π, I(ρM )P

)
,

where for the first isomorphism we argue as follows: By Theorem 17.8, we have a decomposition
rGP π = (rGP π)cusp⊕(rGP π)ind, where no irreducible subquotient of (rGP π)ind is cuspidal. For eachM -
equivariant map f : rGP π → ρM we thus have f

(
(rGP π)ind

)
= {0} by Lemma 16.5(b) and because ρM

is cuspidal. Hence, f is uniquely determined by its restriction to (rGP π)cusp. The last isomorphism
holds, since the direct sum is finite.

We now prove (b). By Theorem 14.3(b) the functors rGP are exact. From Theorem 17.8 it also
follows that the functor (W,ρ) 7→ (Wcusp, ρcusp) is exact. Hence R is exact. If (V, π) ∈ Rep(G) is
finitely generated, then rGP (V, π) is finitely generated by Theorem 14.3(c). But then also its quotient
(rGP (V, π))cusp (Theorem 17.8) is finitely generated. It remains to prove that R is faithful. We
first show that (V, π) 6= {0} implies R(V, π) 6= {0}. But this is clear: Let P = MN be a minimal
standard parabolic subgroup such that rGP (V, π) 6= {0}. Then rGP (V, π) is cuspidal, and hence the
P -component of R(V, π) is non-zero. Let now f : (V, π)→ (V ′, π′) be a non-zero G-equivariant map.
We have to show that R(f) : R(V, π)→ R(V ′, π′) is non-zero. Since R is exact, we have

R(V )/Ker R(f) ∼= R(V )/R(Ker(f)) ∼= R
(
V/Ker(f)

)
6= {0},

and this shows R(f) 6= 0.

For part (c), let (V, π) ∈ Rep(G) and denote ι : Ker ηV ↪→ V the inclusion of the kernel of ηV
into V . Since the isomorphism in (a) is natural, we have a commutative diagram

HomG

(
V, IR(V )

)
HomCusp(G)

(
R(V ),R(V )

)
HomG

(
Ker ηV , IR(V )

)
HomCusp(G)

(
R(Ker ηV ),R(V )

)
.

◦ι

∼=

◦R(ι)

∼=

From ηV ◦ ι = 0 we deduce R(ι) = idR(V ) ◦R(ι) = 0. As R is faithful, we deduce ι = 0 which means
Ker ηV = {0}. Hence, ηV is injective.

Recall that for every inertial equivalence class s ∈ B(G) we denote Irrs(G) = Si−1(s) the set
of all irreducible smooth representations (V, π) ∈ Rep(G) for which there exists a cuspidal datum
(M,ρ) with s = [M,ρ]G such that ρ ∈ JH(rGP π) for some parabolic subgroup P ⊆ G with Levi M .
We denote

Rep(G)s := Rep(G)Irrs

the full subcategory of Rep(G) consisting of the (V, π) such that JH(π) ⊆ Irrs.
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Theorem 21.2 (Bernstein Decomposition Theorem). One has

Rep(G) =
∏

s∈B(G)

Rep(G)s.

Proof. Step 1: Let P = MN be a parabolic subgroup of G, and let (W,σ) ∈ Rep(M)cusp. We show

iGP (W ) =
⊕

s∈B(G)

(iGP W )s.

As (W,σ) is cuspidal, Theorem 17.8 shows W =
⊕

DWD, where D runs through the cuspidal
components of Irrcusp(M). The natural G-equivariant homomorphism⊕

D

iGP (WD)
∼=−→ iGP

(⊕
D

WD

)
(3.19)

is bijective: Indeed, injectivity is obvious from the definition, so we need to show surjectivity. Let
f ∈ iGP

(⊕
DWD

)
. Let H ⊆ G be a compact open subgroup fixing f . As P\G is compact by the

Iwasawa decomposition 12.7, the coset space P\G/H is finite. Let g1, . . . , gl ∈ G be a system of
representatives for P\G/H. Let D1, . . . , Dk be cuspidal components such that f(gi) ∈

⊕k
j=1WDj

for all 1 6 i 6 l. For each g ∈ G, we find x ∈ P , h ∈ H and i such that g = xgih; then

f(g) = f(xgih) = δ
1/2
P (x)σ(x)f(gi) ∈

k⊕
j=1

WDj ,

which shows f ∈ iGP
(⊕k

j=1WDj

)
=
⊕k

j=1 i
G
P (WDj ) ⊆

⊕
D iGP (WD). By Theorem 20.3 we have

iGP (WD) ⊆ (iGP W )s, where s = [M,ρ]G for some (hence all) ρ ∈ D. But then (3.19) shows that we
have an equality, which finishes the proof of Step 1.

Step 2: Proof of the theorem. Let (V, π) ∈ Rep(G). Lemma 21.1 supplies an injection

V ↪−→ IR(V ) =
⊕

P=MN
standard parabolic

iGP
(
(rGP V )cusp

)
.

By Step 1 we have IR(V ) =
⊕

s(IR(V ))s, and Lemma 16.7 shows V =
⊕

s Vs.

We give a characterization for the objects in the block Rep(G)s, for s ∈ B(G).

Corollary 21.3. Let P = MN be a standard parabolic subgroup of G, let D ⊆ Irrcusp(M) be a
cuspidal component. Fix ρ ∈ D and put s := [M,ρ]G. For (V, π) ∈ Rep(G), the following assertions
are equivalent:

(i) (V, π) ∈ Rep(G)s;

(ii) (V, π) is a subrepresentation of
⊕

Q iGQ(WQ, σQ), where the direct sum runs through the stan-
dard parabolic subgroups Q = LR of G such that L = gMg−1 for some g ∈ G, and where
(WQ, σQ) ∈ Rep(L)g∗D.

(iii) (V, π) is a subquotient of a representation as in (ii);
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(iv) rGP (V, π) ∈
∏
w∈W(M) Rep(M)w∗D;

(v) Whenever Q = LR is a standard parabolic subgroup of G and D′ ⊆ Irrcusp(L) is a cuspidal
component such that (gLg−1, g∗D

′) 6= (M,D) for all g ∈ G, then the component of rGQ(V, π)
in Rep(L)D′ is zero.

Proof. Since each iGQ(WQ, σQ) as in (ii) lies in Rep(G)s, and Rep(G)s is closed under subquotients,
the implications (ii) =⇒ (iii) =⇒ (i) are clear. In the proof of Theorem 21.2 we have seen that

V ⊆ IR(V ) =
⊕

(Q,D′)

iGQ
(
(rGQ V )D′

)
,

where the direct sum runs through the pairs (Q,D′), where Q = LR is a standard parabolic subgroup
of G and D′ ⊆ Irrcusp(L) is a cuspidal component. Since IR(V )s has the form described in (ii), we
obtain the implication (i) =⇒ (ii).

Finally, the implications (v) =⇒ (iv) =⇒ (i) =⇒ (v) are clear from the definitions.

Let now P = MN be a parabolic subgroup of G. A cuspidal datum (L, σ) ofM is also a cuspidal
datum of G. We obtain maps

iGM : Ω(M) −→ Ω(G), iGM : B(M) −→ B(G),

(L, σ)M 7−→ (L, σ)G, [L, σ]M 7−→ [L, σ]G.

Corollary 21.4.

(a) Let s ∈ B(M) and (W,ρ) ∈ Rep(M)s. Then iGP (W,ρ) ∈ Rep(G)iGM (s).

(b) Let t ∈ B(G) and (V, π) ∈ Rep(G)t. Then rGP (V, π) ∈
∏

s∈i−1
GM (t) Rep(M)s.

Proof. Part (a) follows from the equivalence (i)⇐⇒ (ii) in Corollary 21.3 and the transitivity of iGP
(Theorem 14.3(e)), whereas (b) follows from the equivalence (i)⇐⇒ (iv) in Corollary 21.3 and the
transitivity of rGP .

Alternatively, check this directly using Theorem 20.3 (and Theorem 21.2).
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