
TALK 7: DISCRETE ADIC SPACES

CLAUDIUS HEYER

Contents

1. Static Analytic Rings 1
2. Animated Analytic Rings 6
3. Gluing discrete Huber pairs 9
4. Comparison with Huber’s discrete adic spaces 11
References 14

Notation: We denote (Profin) the category of profinite sets and (ExtrDisc) its full subcategory of
extremally disconnected sets.

If A is a condensed ring, we write Mod(A) for the category of condensed A-modules. We denote
D(A) the (unbounded) derived∞-category of Mod(A), and D≤0(A) its full subcategory of connective
complexes. We write RHomA for the internal Hom of D(A).

1. Static Analytic Rings

1.1. In this section, unless specified otherwise, all the rings are classical condensed rings, i.e.,
“underived” rings endowed with the discrete topology. The main objective of this section is to recall
the notion of analytic rings in this context and study some of their properties. As the main result,
we show that any Z-algebra of finite type comes with a natural analytic structure.

Recall the following definition:

1.2. Definition. (a) A pre-analytic ring is a pair A = (A,M), where A is a condensed ring
and

M : (Profin) −→ Mod(A),

S 7−→ A[S]

is a functor from profinite sets to the category of condensed A-modules, together with a
natural transformation A[S]→ A[S] of functors (Profin)→ Mod(A).

(b) A pre-analytic ring A is called analytic if in addition the following properties hold:
(i) For any S, T ∈ (Profin) we haveM(S t T ) =M(S)⊕M(T ), and the map A → A[∗]

is an isomorphism of A-modules.
(ii) For any complex C = [· · · → Cn → · · · → C0 → 0] of A-modules of the form

Cn =
⊕

iA[Si], for varying profinite sets Si, the natural map

RHomA
(
A[S], C

) ∼=−→ RHomA
(
A[S], C

)
is an in the derived category D(A) of Mod(A).

(c) If A = (A,M) is an analytic ring, a complex M ∈ D(A) is called A-analytic if for any
profinite set S the canonical map

RHomA(A[S],M)
∼=−→ RHomA(A[S],M)

is an isomorphism in D(A). We denote D(A) ⊆ D(A) the full subcategory consisting of
A-analytic complexes.

We will later consider a general notion of analytic structures on animated condensed rings.
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1.3. Remark. The full subcategory D(A) of D(A) is closed under small (co)limits and extensions
and is generated by the compact projective objects A[S], where S runs through the extremally
disconnected sets.

The inclusion D(A) ⊆ D(A) admits a left adjoint − ⊗AA sending A[S] 7→ A[S]. Moreover,
M ⊗A N := (M ⊗A N)⊗A A is the unique symmetric monoidal structure on D(A) making − ⊗AA
a symmetric monoidal functor. In particular, we have A[S]⊗A A[T ] ∼= A[S × T ], for all profinite
sets S, T .

1.4. Example. Let A be a Z-algebra of finite type.
(a) We define a pre-analytic ring A� with underlying condensed ring A and A�[S] := lim←−iA[Si],

where the Si are finite sets and S := lim←−i Si. Note that there is a canonical natural
transformation A[S]→ A�[S].

We have seen that, for any profinite set S = lim←−i Si, the abelian group C(S,Z) of
continuous maps S → Z is free. Since we have isomorphisms of condensed A-modules
A�[S] = lim←−iA[Si] ∼= lim←−i Hom(C(Si,Z), A) ∼= Hom(lim−→i

C(Si,Z), A) ∼= Hom(C(S,Z), A),
we deduce an isomorphism

(1.5) A�[S] ∼= AI

of condensed A-modules, where I is some set satisfying |I| ≤ 2|S|.
(b) Let A→ B be a ring morphism. Then (B,A)�[S] := B ⊗A A�[S] defines a pre-analytic ring

structure on B.

Our goal in this section is to prove the following theorem.

1.6. Theorem. Let A be a ring of finite type over Z. The pair

A� :=
(
A,S 7→ lim←−

i

A[Si]
)

is an analytic ring.

We prepare the proof with a sequence of lemmas.

1.7. Lemma. Let A→ B be a morphism between Z-algebras, and assume that A is of finite type.
(a) If A→ B is finite, then B� = (B,A)�.
(b) If A� is analytic, then so is (B,A)�.

Proof. We first make an observation: given a discrete A-module M and any set I, we have an
isomorphism

(1.8) M
L
⊗
A
AI

∼=−→M ⊗A AI .

Indeed both sides commute with colimits in M , so we may assume that M is finitely generated. In
this case, we claim that the canonical map

(1.9) M
L
⊗
A
AI −→M I

is an isomorphism in D(A), which proves the claim since the right-hand side is concentrated in
degree 0. But this follows by resolving M by finite free A-modules (using that A is noetherian).

We will use (1.8) implicitly from now on.

To prove (a), let S be a profinite set. We have to show that the canonical map B⊗AA�[S]→ B�[S]
is an isomorphism in D(B). But since B�[S] ∼= BI by (1.5), this follows from (1.9).

We now prove (b). Let S be a profinite set and C = [· · · → Cn → · · · → C1 → C0] be a complex of
the form Cn =

⊕
iB⊗AA�[Si], for varying profinite sets Si. Note that B⊗AA�[Si] is an A�-analytic

A-module: since A�-analytic A-modules are closed under small colimits, we easily reduce to the case
where B is a finitely generated A-module so that B ⊗A A�[Si] ∼= BI by (1.9), which as a product of
discrete (hence A�-analytic) A-modules is again A�-analytic. Consequently, C is A�-analytic.

We now have natural isomorphisms

RHomD(B)

(
B ⊗A A�[S], C

) ∼= RHomD(A)

(
A�[S], C

)
∼= RHomD(A)

(
A[S], C

) ∼= RHomD(B)

(
B[S], C

)
. �
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1.10. Remark. In the situation of Lemma 1.7.(b), the category D�(B,A) := D
(
(B,A)�

)
consists

precisely of those objects in D(B) mapping to D�(A) := D(A�) under the forgetful functor.
It follows from (1.5) that for profinite sets S, the A-module A�[S] is compact projective. Hence,

it follows formally from Remark 1.3 that the full subcategory of compact objects in D�(A) is closed
under the tensor product. The analogous statement is true for D�(B,A).

1.11. Lemma. Consider the A[x]-algebra A[x]∞ := A((x−1)), which we view as the algebra of
“functions near infinity”.

Assume that A� is an analytic ring.

(a) The A[x]-module Q, defined by the exact sequence

0 −→ A[x]⊗A A�[S] −→ A[x]�[S] −→ Q −→ 0

is naturally an A[x]∞-module, for any profinite set S.
(b) The A[x]-module A[x]∞ is compact in D�(A[x], A).
(c) One has RHomA[x](A[x]∞,M) = 0 for any discrete A[x]-module M .

Proof. To prove (a), recall that A�[S] ∼= AI and A[x]�[S] ∼= A[x]I by (1.5). Now notice that we have
a pushout diagram

A[x]⊗A AI A[x]I

A((x−1))⊗AJx−1K AJx−1KI A((x−1))I .
p

The assertion follows from the observation that Q is also the cokernel of the bottom map.

Let us show (b). Observe that AJyK ∼= AN is compact in D�(A) and hence A[x]⊗AAJyK is compact
in D�(A[x], A). Since we have a cofiber sequence

(1.12) A[x]⊗A AJyK
·(x⊗y−1⊗1)−−−−−−−−→ A[x]⊗A AJyK −→ A((x−1)),

which is in fact a short exact sequence, it follows that also A((x−1)) is compact.

We now prove (c). The resolution (1.12) shows that it suffices to prove that the top map in the
diagram

RHomA[x]

(
A[x]⊗A AJyK,M

)
RHomA[x]

(
A[x]⊗A AJyK,M

)
RHomA

(
AJyK,M

)
RHomA

(
AJyK,M

)
M [y−1]/M M [y−1]/M

x⊗y−1⊗1

∼= ∼=

f 7→xf(y·)−f
ϕ

·(xy−1)

ψ

ϕ

is an isomorphism. We will construct an isomorphism ϕ which makes the diagram commute. Given
this, it remains to show that the bottom map, ψ, is an isomorphism of A[x]-modules. It is clear
that ψ is injective, and surjectivity follows from the equation my−n = xmy−(n−1) − ψ(my−n) by
induction on n.

To finish the proof, we construct ϕ. Note that the functor S 7→ A�[S] is monoidal, which means

A�[S]
L
⊗A�

A�[T ] ∼= A�[S × T ] for any profinite sets S, T . As any AI is a direct summand of A�[S]
for some profinite set S, we deduce a natural isomorphism

(1.13) AI
L
⊗
A�

AJ ∼= AI×J , for all sets I, J .
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Let S be a profinite set. We compute

HomA

(
A[S],M (N)

) ∼= HomA

(
A�[S],M (N)

)
(M (N) is A�-analytic)

∼=
⊕
N

HomA

(
A�[S],M

)
(A�[S] is compact in D�(A))

∼= HomA

(
A�[S]N,M

)
∼= HomA

(
A�[S]

L
⊗
A�

AN,M
)

(by (1.13))

∼= HomA

(
A[S]

L
⊗
A
AN,M

)
(M is A�-analytic)

∼= HomA

(
A[S],RHomA(AN,M)

)
,

where the third isomorphism (which is given by
∑
n fn 7→

∑
n fn ◦ prn) follows from the fact that

the functor M 7→M from topological A-modules into condensed A-modules is fully faithful, A�[S]N

carries the product topology, and M is discrete. These isomorphisms are induced by the map

(1.14) ϕ′ : M (N) −→ RHomA

(
AN,M

)
,

which arises from the pairing AN ⊗A M (N) → M given by (an)n ⊗
∑
nmn 7→

∑
n anmn. As the

A[S] generate D(A), we deduce that ϕ′ is an isomorphism. Under the obvious identifications
M (N) ∼= M [y−1]/M and AN ∼= AJyK we obtain an isomorphism

(1.15) ϕ : M [y−1]/M
∼=−→ RHomA

(
AJyK,M

)
,

arising from the pairing

〈− ⊗ −〉 : AJyK⊗AM [y−1]/M
act−−→M [y−1]/M

res−−→M,

where the residue map res is given by
∑
i≥0m−iy

−i−1 7→ m0. To verify the commutativity of the
bottom diagram above, it suffices to observe

x ·
〈
y ·
∑
n≥0

any
n ⊗

∑
i≥0

m−iy
−i−1

〉
=
〈∑
n≥0

any
n ⊗

∑
i≥0

xym−iy
−i−1

〉
in M .

This finishes the proof. �

Proof of Theorem 1.6. Let A be a ring of finite type over Z and pick a surjection Z[x1, . . . , xn]→→ A.
By Lemma 1.7.(a) we have A� = (A,Z[x1, . . . , xn])�. Hence, by Lemma 1.7.(b) it suffices to prove
that Z[x1, . . . , xn]� is analytic. By induction on n, we are reduced to showing the following statement:

Suppose that A is a finite-type Z-algebra such that A� is analytic; then A[x]� is analytic.
Pick a complex C = [· · · → Cn → · · · → C0 → 0] of A[x]-modules, where each Cn is of the form⊕
I A[x]J , and fix a profinite set S. Consider the commutative diagram

RHomA[x]

(
A[x]�[S], C

)
RHomA[x]

(
A[x][S], C

)
RHomA

(
A[S], C

)
RHomA[x]

(
A[x]⊗A A�[S], C

)
RHomA

(
A�[S], C

)
,

∼=

∼=

∼=

where the lower right vertical map is an isomorphism because C is A�-analytic. We have to show that
the top map is an isomorphism. Consider the cokernelQ of the mapA[x]⊗AA�[S]→ A[x]�[S]. We then
have a fiber sequence RHomA[x](Q,C) → RHomA[x](A[x]�[S], C) → RHomA[x](A[x] ⊗A A�[S], C).
We claim that

(1.16) RHomA[x](Q,C) = 0.

Once this is proven, it follows that the left vertical map above is an isomorphism. But then also the
top map is an isomorphism, which finishes the proof.
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By Lemma 1.11.(a), we know that Q is an A[x]∞-module. Hence, we have RHomA[x](Q,C) ∼=
RHomA[x]∞

(
Q,RHomA[x](A[x]∞, C)

)
, and it remains to prove RHomA[x](A[x]∞, C) = 0. Write

C = lim−→n
σ≥−nC as a filtered colimit of its brutal truncations. Since A[x]∞ is compact in D�(A[x], A),

by Lemma 1.11.(b), and since the full subcategory of compact objects in D�(A[x], A) is closed under
tensor products by Remark 1.10, it follows formally that the natural map

lim−→
n

RHomA[x]

(
A[x]∞, σ

≥−nC
) ∼=−→ RHomA[x]

(
A[x]∞, C

)
is an isomorphism. We may thus assume that C is bounded. Moreover, using that C is the cofiber of
the map σ≤aC[−1]→ σ>aC, we inductively reduce to the case C =

⊕
I A[x]J and then further to

C = A[x]. But now, Lemma 1.11.(c) shows RHomA[x](A[x]∞, A[x]) = 0. We deduce (1.16), finishing
the proof. �

1.17. Exercise. Let A be a finitely generated Z-algebra and M ∈ D�(A[x], A). Show:

(a) M ⊗(A[x],A)� A[x]� = 0 ⇐⇒ M is an A[x]∞-module.
(b) M ⊗(A[x],A)� (A[x, x−1], A[x−1])� = 0 ⇐⇒ M is an AJxK-module.

Proof. We show (a). The “if”-direction follows from

HomA[x]

(
M ⊗(A[x],A)� A[x]�, C

) ∼= HomA[x]∞

(
M,RHomA[x](A[x]∞, C)

)
= 0.

The last equation follows by writing C = lim←−n σ
≤nC, and then (1.16) implies RHomA[x](A[x]∞, C) ∼=

lim←−n RHomA[x](A[x]∞, σ
≤nC) = 0, because every σ≤nC is quasi-isomorphic to some complex [· · · →

Di → · · · → Dn → 0], where each Di is of the form
⊕

I A[x]J . For the “only if”-direction, it suffices
to show that the cofiber of the unit map M → M ⊗(A[x],A)� A[x]� is naturally an A[x]∞-module.
But since both sides commute with colimits, we may reduce to the case M = A[x]⊗A A[S], for some
profinite set S, in which case this follows from Lemma 1.11.(a).

We now prove (b), which is similar to (a). First note that we have a short exact sequence

(1.18) A[x]⊗A AJyK x−y−−−→ A[x]⊗A AJyK −→ AJxK −→ 0,

which shows that AJxK is compact in D�(A[x], A). For the “if”-direction we compute, for any
C ∈ D�(A[x, x−1], A[x−1]),

HomA[x,x−1]

(
M ⊗(A[x],A)� (A[x, x−1], A[x−1])�, C

) ∼= HomAJxK
(
M,RHomA[x](AJxK, C)

)
= 0.

For the last equation, we can reduce as before the the case C = A[x, x−1], and then the proof of
Lemma 1.11.(c), but using the resolution (1.18), shows RHomA[x](AJxK, A[x, x−1]) = 0. For the “only
if”-direction it suffices to show that the cofiber of M →M ⊗(A[x],A)� (A[x, x−1], A[x−1])� is naturally
an AJxK-module. Again, we reduce to the case M = A[x]⊗A A[S], for some profinite set S. Writing
A[S] ∼= AI , we need to see that the cokernel of A[x]⊗A AI → A[x, x−1]⊗A[x−1] A[x−1]I , say Q, is
an AJxK-module. But since we have a pushout diagram

A[x]⊗A AI A[x, x−1]⊗A[x−1] A[x−1]I

AJxKI A((x))I ,
p

this follows from the fact that Q is canonically isomorphic to the cokernel of the bottom map. �

For later reference, we discuss the following lemma.

1.19. Lemma. Let A be a finitely generated Z-algebra. There is a natural equivalence

− ⊗A�
A[x]�

∼=−→ RHomA

(
A[x]∞/A[x],−

)
of functors D�(A)→ D�(A[x]). In particular, − ⊗A�

A[x]� is t-exact and preserves all limits.
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Proof. The proof is very similar to the proof of Lemma 1.11.(c). Write C := A[x]∞/A[x] to shorten
the notation. Note that RHomA(C,−) ∼= RHomA[x](C,RHomA(A[x],−)) in D(A), so that the former
naturally can be viewed as an object of D(A[x]).

The A-linear map M ⊗A A[x]∞/A[x] → M , given by m ⊗
∑
i≥0 fix

−i−1 7→ f0m induces an
A[x]-linear map

(1.20) M ⊗A A[x] −→ RHomA

(
A[x]∞/A[x],M

)
.

We have to show that the right-hand side lies in D�(A[x]) whenever M ∈ D�(A), and in this case
the map becomes an isomorphism after analytification.

For M = A the map (1.20) is an isomorphism, which follows from (1.14) after the identifica-
tions A[x] ∼= A(N) and A[x]∞/A[x] ∼= AN. Since the latter is compact in D�(A), it follows that
RHomA(A[x]∞/A,−) commutes with colimits. As D�(A) is generated by A under products and
colimits, it follows that RHomA(A[x]∞/A[x],M) is A[x]�-analytic for all M ∈ D�(A). We obtain a
morphism

(1.21) M ⊗A�
A[x]� −→ RHomA

(
A[x]∞/A[x],M

)
of A[x]�-analytic modules. Now, both sides commute with colimits in M . In order to show that
(1.21) is an isomorphism, we may thus reduce to M = AI . Now, we have a commutative diagram

AI ⊗A�
A[x]� RHomA

(
A[x]∞/A[x], AI

)
∏
I A[x]

∏
I RHomA

(
A[x]∞/A[x], A

)
,

∼=

∼=

where the bottom map is the isomorphism (1.20) for M = A in each component. The left vertical
map is an isomorphism: we may enlarge I and hence assume that AI ∼= A�[S], for some profinite set
S; the map then identifies with the isomorphism A�[S]⊗A�

A[x]�
∼=−→ A[x]�[S]. Consequently, the

top map in the diagram, hence also (1.21), is an isomorphism as well. �

2. Animated Analytic Rings

2.1. We briefly recall the notion of an animated condensed ring. We write An for the ∞-category of
anima.

Let C be the category of condensed rings of the form Z[N[S]], where N[S] is the free abelian
monoid on the extremally disconnected set S; thus Z[N[S]] is the free condensed ring on S. The
retracts of objects in C are precisely the compact projective objects in Cond(Ring).

The ∞-category Ani(Cond(Ring)) := FunΠ(Cop,An) of functors which commute with finite
products is called the animation of Cond(Ring).

Every condensed ring A determines a functor Cop → Set ⊆ An via R 7→ HomC(R,A). This
determines a fully faithful embedding Cond(Ring) ↪→ Ani(Cond(Ring)). Animated condensed rings
satisfy the following universal property: let D be an ∞-category which admits all sifted colimits.
The restriction map

Funsifted
(
Ani(Cond(Ring)),D

)
−→ Fun(Cond(Ring),D)

is an equivalence of functor ∞-categories, where the left-hand side denotes the full subcategory of
those functors Ani(Cond(Ring))→ D which preserve sifted colimits. In other words: Ani(Cond(Ring))
is obtained by freely adjoining all sifted colimits to C.

We now recall the notion of analytic rings from the last talk.

2.2. Definition. An analytic ring is a pair A = (A,M), where A is an animated condensed ring
andM is a functor

M : (ExtrDisc) −→ D≤0(A),

together with a natural transformation A[S]→ A[S] :=M(S), such that the following properties
are satisfied:

(a) A[S t T ] = A[S]⊕A[T ] and the map A → A[∗] is an isomorphism of A-modules.
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(b) If M ∈ D(A) is a sifted colimit of copies of A[S], for varying extremally disconnected sets S,
then for all S ∈ (ExtrDisc) the natural map

RHomA
(
A[S],M

) ∼=−→ RHomA
(
A[S],M

)
is an isomorphism.

(c) For every prime p, the forgetful functor along the Frobenius A → A/p maps every (A/p)[S] :=
A[S]/p to an A-module M satisfying the property in (b).

The modules M ∈ D(A) satisfying the property in (b) are called A-analytic. We denote the full
subcategory of A-analytic modules by D(A).

A morphism A → B of analytic rings is a morphism A → B of underlying animated condensed
rings such that the image of D(B) maps into D(A) under the forgetful functor.

2.3. Remark. (a) We are mostly interested in discrete animated rings. These are precisely the
sifted colimits of the polynomial rings Z[x1, . . . , xn]. The full subcategory of Ani(Cond(Ring))
consisting of discrete animated rings is denoted Ani(Ring).

(b) Analytic rings assemble into an ∞-category AnRing, which admits all limits and colimits.
(c) The analytic ring structure A is uniquely determined by the full subcategory D(A) ⊆ D(A),

as A[S] is recovered as the image of A[S] under the left adjoint of the inclusion.
(d) The t-structure on D(A) restricts to a t-structure on D(A) whose heart D(A)♥ is generated

under colimits (in Mod(π0A)) by the π0A[S], for varying extremally disconnected S, cf.
[Man22, Proposition 2.3.8]. This means thatM ∈ D(A) is A-analytic if and only if Hn(M) ∈
D(A)♥ for all n ∈ Z.

Upshot: The full subcategory D(A) ⊆ D(A) is completely determined by a full subcate-
gory of Mod(π0A).

2.4. Definition. (a) Let A be a discrete animated ring. We put A� := lim−→i
Ai,�, where A =

lim−→i
Ai is any representation of A as a sifted colimit of classical rings that are of finite type

over Z.1 Concretely, for any extremally disconnected set S, we have A�[S] = lim−→i
AJi for a

suitable set J .
(b) Let A→ B be a morphism of discrete animated rings. We denote (B,A)� the analytic ring

structure on B given by (B,A)�[S] := B ⊗A A�[S].
(c) We denote D�(A) := D(A�) and D�(B,A) := D((B,A)�). Recall that D�(B,A) is the full

subcategory of D(B) consisting of condensed B-modules which are A�-analytic.

2.5. Lemma. Let A→ B be a morphism of classical rings and denote Ã ⊆ B the integral closure of
the image of A in B. Then (B,A)� = (B, Ã)�.

Proof. Let S be a profinite set. We have to show that the canonical map

B ⊗A A�[S] −→ B ⊗Ã Ã�[S]

is an isomorphism. Clearly, we may assume B = Ã; in other words, we reduce to the situation where
A→ B is integral and have to show that the map B ⊗A A�[S]→ B�[S] is an isomorphism.

We show that A→ B can be written as a direct limit of finite maps between finitely generated
algebras. Let I be the set of finite subsets of B, ordered by inclusion. Then B = lim−→i∈I A[i]. Since
A → B[i] is integral, we find a finite subset Λi ⊆ A such that each element of i is integral over
Ai,0 := Z[Λi] and such that Λi1 ⊆ Λi2 whenever i1 ⊆ i2. Let J be the set of finite subsets of A,
ordered by inclusion. The set I × J is directed with partial order given by (i1, j1) ≤ (i2, j2) if i1 ⊆ i2
and j1 ⊆ j2. Put Ai,j := Ai,0[j] and Bi,j := Ai,0[i ∪ j], for any (i, j) ∈ I × J . Then Ai,j → Bi,j
is a finite map between finitely generated algebras, and A → B is the direct limit of the maps
Ai,j → Bi,j .

1More rigorously, Ani(Ring) → AnRing, A 7→ A�, is the unique extension of {polynomial rings} → AnRing,
Z[x1, . . . , xn] 7→ Z[x1, . . . , xn]�, to a functor that preserves sifted colimits. With this description it is clear that A� is
independent of the chosen presentation of A as a sifted colimit of finitely generated algebras.
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For any extremally disconnected set S we compute

B�[S] ∼= lim−→
(i,j)

(Bi,j)�[S] ∼= lim−→
(i,j)

(
Bi,j ⊗Ai,j

(Ai,j)�[S]
)

∼= lim−→
(i,j)

Bi,j ⊗lim−→Ai,j
lim−→
(i,j)

(Ai,j)�[S] ∼= B ⊗A A�[S],

where the second isomorphism uses Lemma 1.7.(a) and the third isomorphism follows from the fact
that I × J is directed. �

2.6. Definition. (a) A discrete Huber pair is a pair (A,A+) consisting of a discrete animated
ring A and an integrally closed subring A+ ⊆ π0A.

A morphism (A,A+) → (B,B+) of discrete Huber pairs is a morphism A → B of
animated rings such that A+ maps to B+ under the induced map π0A→ π0B.

(b) Let (A,A+) be a discrete Huber pair. We define an analytic ring structure (A,A+)� on A as
follows: if A is static, we put (A,A+)�[S] := A⊗A+ A+

� [S] for any extremally disconnected
set S. For general A, we let (A,A+)� be the analytic ring structure induced from (π0A,A

+)�,
cf. [Man22, Proposition 2.3.14].

(c) We write D�(A,A+) = D((A,A+)�). An (A,A+)�-analytic module is an object of D�(A,A+).

2.7. Notation. Given discrete animated rings A and A+ and a map A+ → π0A, we write

(A,A+)� := (A, Ã+)�,

where Ã+ ⊆ π0A is the integral closure of the image of the map π0A
+ → π0A.

2.8. Remark. For a general discrete Huber pair (A,A+), the analytic ring structure (A,A+)� is
difficult to describe explicitly. However, the category D�(A,A+) admits an easy concrete description:
It consists of those modules M ∈ D(A) such that Hn(M) ∈ D�(π0A,A

+) for all n ∈ Z.

2.9. Remark. The ∞-category AnRing of analytic rings is cocomplete, and while sifted colimits
are easy to compute, the description of pushouts is quite subtle, cf. [Man22, Proposition 2.3.15].
Given morphisms B ← A → C in AnRing, the pushout E = B ⊗A C is the “completion” of the
uncompleted analytic ring structure on B ⊗A C such that D(E) ⊆ D(B ⊗A C) is given by all modules
M ∈ D(B ⊗A C) which map to D(B) and D(C) under the forgetful functors. If S is an extremally
disconnected set, then E [S] is given as the colimit of the repeated application of (−⊗B B)⊗C C to
(B ⊗A C)[S].

A particularly nice class of morphisms in AnRing, along which the base change can be easily
described, are the so-called steady ones: a morphism f : A → B in AnRing is called steady if for all
morphisms g : A → C of analytic rings and all extremally disconnected sets S the canonical map

B ⊗A C[S]
∼=−→ (B ⊗A C)[S]

is an isomorphism in D(B ⊗A C). Equivalently, for all g : A → C as above, and all M ∈ D(C) the
canonical map B ⊗AM → (B ⊗A C)⊗C M is an isomorphism in D(B).

2.10. Proposition. (a) The assignment (A,A+) 7→ (A,A+)� defines a fully faithful functor
from the ∞-category of discrete Huber pairs to AnRing, which preserves all non-empty
colimits. In particular, for any morphisms (B,B+)← (A,A+)→ (C,C+) of discrete Huber
pairs, we have

(B,B+)� ⊗(A,A+)� (C,C+)� = (B ⊗A C,B+ ⊗A+ C+)�.

(b) Every morphism f : (A,A+)� → (B,B+)� is steady, i.e., for all pushout diagrams

(A,A+)� (B,B+)�

C C′
g

f

p
g′

f ′

of analytic rings and all M ∈ D(C) the natural map

M ⊗(A,A+)� (B,B+)�
∼=−→M ⊗C C′
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is an isomorphism in D�(B,B+).

Proof. For (a), see [Man22, Proposition 2.9.6]. We only remark that the identity on tensor products
in (a) is reduced to the case A = A+, B = B+ = A[x] and C = C+ and where A,B,C are of
finite type. For any extremally disconnected set S the object (A[x]� ⊗A�

C�)[S] ∈ D(C[x]) is given
as the colimit of the repeated applications of (− ⊗CC�) ⊗A[x] A[x]� to A[x] ⊗A C[S]. We have
((A[x]⊗A C[S])⊗C C�)⊗A[x] A[x]� = (A[x]⊗A C�[S])⊗A[x] A[x]� = A[x]� ⊗A�

C�[S], and then (1.5)
and Lemma 1.19 show that the natural map

A[x]� ⊗A�
C�[S]

∼=−→ C[x]�[S]

is an isomorphism. We deduce (A[x]� ⊗A�
C�)[S] ∼= C[x]�[S], which proves the claim.

For (b) we refer to [Man22, Proposition 2.9.7]. �

3. Gluing discrete Huber pairs

3.1. The goal in this section is to concoct a geometric theory of discrete adic spaces from the
analytic rings (A,A+)�. This is done by specifying “standard immersions” (A,A+)� → (B,B+)�
along which we can glue these analytic rings.2 This gluing procedure is completely formal, and so
we explain the general scheme before applying it to the analytic rings (A,A+)�.

3.2. Definition. A morphism f : A → B of analytic rings is called a localization if the forgetful
functor f∗ : D(B)→ D(A) is fully faithful.

One should think of (steady) localizations as “standard immersions”. These have nice closure
properties as the next result shows.

3.3. Proposition. (a) Localizations of analytic rings are stable under composition and base
change. Steady localizations are stable under all colimits.

(b) Let f : A → B be a morphism of analytic rings. If f is a localization, then the induced
map B

∼=−→ B ⊗A B is an isomorphism. Conversely, if f is steady and B → B ⊗A B is an
isomorphism then f is a localization.

Proof. We only show (b); for (a) we refer to [Man22, Proposition 2.4.2]. So let f : A → B be a
localization. Let B′ be the uncompleted analytic ring given by B′ = B and B′[S] = (B ⊗A B)[S].
Since f∗ is fully faithful, the counit B[S]⊗A B = f∗f∗(B[S])→ B[S] is an isomorphism, hence so is
the unit B[S]

∼=−→ B[S]⊗A B. Therefore, B[S]⊗A B maps to D(B) under both projections, and we
deduce B′[S] ∼= B[S]⊗A B ∼= B[S]. But then B′ is already completed so that B

∼=−→ B′ ∼= B ⊗A B.
Conversely, if f is steady and B → B ⊗A B is an isomorphism, then for all M ∈ D(B) we have

M ⊗A B ∼= M ⊗B (B ⊗A B) ∼= M ⊗B B ∼= M , where the first isomorphism uses the steadiness of f .
Hence, the counit f∗f∗ → idD(B) is an isomorphism, which is equivalent to f∗ : D(B)→ D(A) being
fully faithful. �

3.4. Definition. A geometry blueprint is a pair G = (RG, LG), where RG ⊆ AnRing is a full
subcategory and LG is a class of morphisms in RG, such that the following properties are satisfied:

(a) We have {equivalences} ⊆ LG ⊆ {steady localizations}.
(b) LG is stable under composition and arbitrary base change in RG.
(c) RG is stable under pushouts and finite products in AnRing. In particular, RG contains the

terminal object 0.
The objects of RG are calld G-analytic rings and the morphisms in LG are called G-localizations.

We fix a geometry blueprint G = (RG, LG).

3.5. Definition. (a) The objects of Rop
G are denoted AnSpecGA, for A ∈ RG.

(b) The G-analytic site on Rop
G is the Grothendieck site whose coverings are generated by

finite families of G-localizations {AnSpecGAi → AnSpecGA}i such that the pullback
D(A)→

∏
iD(Ai) is conservative.

2These standard immersions, called G-localizations below, should not be thought of as open immersions. In fact,
we should also allow adic spaces to be glued along closed immersions.
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(c) We denote Shv(Rop
G ) the ∞-category of sheaves (in anima) on the site Rop

G . More concretely,
F : RG → An is a sheaf if:
• F preserves finite products;
• F satisfies Čech descent: for every X = AnSpecGA ∈ Rop

G and every covering
{AnSpecGAi → X}i, consider the Čech nerve U• : ∆op → Rop

G given by U0 =
⊔
i AnSpecGAi

and Un := U0×X · · ·×X U0 (which consists of n+ 1 copies of U0); then the natural map

F(X)
∼=−→ lim←−

n∈∆

F(Un)

∼= lim←−
(
F(U0) F(U1) F(U2) · · ·

)
is an isomorphism of anima.

3.6. Example. (a) The functor

D : RG −→ Cat∞, A 7−→ D(A)

is a sheaf valued in the ∞-category Cat∞ of ∞-categories for the G-analytic site.
(b) For every A ∈ RG, the functor

AnSpecGA : RG −→ An, B 7−→ HomRG
(A,B)

is a sheaf for the G-analytic site. Inparticular, we can view Rop
G as a full subcategory of

Shv(Rop
G ).

Proof. We prove (a). It is clear that the functor A 7→ D(A) commutes with finite products. Let
{AnSpecG Bi → AnSpecG B}i∈I be a G-analytic covering, where I is a finite set. For any non-empty
subset J ⊆ I, we consider fJ : B → BJ :=

⊗
j∈J Bj , where the pushouts are taken over B. Since each

B → Bj is a steady localization, it follows inductively that D(BJ ) =
⋂
j∈J D(Bj) as full subcategories

of D(B). Unraveling the sheaf condition, we have to show that the natural map

F : D(B) −→ lim←−
J⊆I
D(BJ), M 7−→

(
f∗JM

)
J

is an equivalence of ∞-categories, where the transition maps are given by the base change functors
f∗J,J ′ : D(BJ) → D(BJ′) for J ⊆ J ′. Note that the functor F admits a right adjoint sending
(NJ)J 7→ lim←−J fJ,∗NJ , because

Homlim←−D(BJ )

(
FM, (NJ)J

) ∼= lim←−
J

HomD(BJ )

(
f∗JM,NJ

)
∼= lim←−

J

HomD(B)(M,fJ,∗NJ) ∼= HomD(B)

(
M, lim←−

J

fJ,∗NJ
)
.

Since D(B)→
∏
iD(Bi) is conservative, verifying that the unitM → lim←−J fJ,∗f

∗
JM is an isomorphism

can be checked after applying f∗i for all i ∈ I. As the limit is finite, it commutes with the exact
functor f∗i . The unit becomes f∗iM → lim←−J f

∗
i fJ,∗f

∗
JM
∼= lim←−J3i fJ,∗f

∗
Jf
∗
iM , where the isomorphism

uses the base change property of the steady map B → Bi; this is an isomorphism, since {i} is
an initial element in {J ⊆ I | i ∈ J}. For the counit, we argue similarly. We have to show that
for every (NJ)J ∈ lim←−J D(BJ) and any K ⊆ I the natural map f∗K lim←−J⊆I fJ,∗NJ → NK , given as
the adjoint of the natural projection, is an isomorphism. As f∗KNJ ∼= NK∪J , we have by a similar
argument as above isomorphisms f∗K lim←−J fJ,∗NJ

∼= lim←−J⊇K fJ,∗NJ
∼=−→ NK , because K is initial in

{J ⊆ I | K ⊆ J}. We conclude that A 7→ D(A) is a sheaf.
In order to prove (b), let B,Bi,BJ be as above. Given A ∈ RG, we have to show that the natural

map
HomRG

(A,B) −→ lim←−
J⊆I

HomRG
(A,BJ) ∼= HomRG

(
A, lim←−

J

BJ
)

is an isomorphism. It suffices to show that B → lim←−J fJ,∗BJ is an isomorphism in AnRing. By
(a), it follows that the map B[S] → lim←−J fJ,∗BJ [S] is an isomorphism in D(B), for all extremally
disconnected sets S. Setting S = ∗ and using that the forgetful functor from algebras to modules is
conservative, we deduce B

∼=−→ lim←−J BJ as analytic rings. �
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3.7. Definition. Let X ∈ Shv(Rop
G ) be a sheaf.

(a) X is called an affine G-analytic space if X ∼= AnSpecGA, for some analytic ring A ∈ RG.
(b) Assume thatX = AnSpecGA is affine. AG-analytic subspace ofX is a subsheafU ⊆ X which

admits a cover3
⊔
i Ui →→ U by a small family of affine subsheaves Ui ∼= AnSpecG Bi ⊆ U ,

such that the induced maps A → Bi are G-localizations.
(c) A G-analytic subspace of X is a subsheaf U ⊆ X such that for every map Y → X from an

an affine G-analytic space Y , the pullback U ×X Y → Y is a G-analytic subspace.
(d) X is called a G-analytic space if it can be covered by subsheaves which are affine G-analytic

subspaces.

3.8. Remark. Since G-localizations are stable under all base changes, the definitions (b) and (c)
are compatible.

3.9. Definition. An analytic space is a G0-analytic space for the geometry blueprint G0 =
(AnRing, {steady localizations}). We write AnSpace for the ∞-category of analytic spaces. A steady
subspace of an analytic space is a G0-analytic subspace.

We finally come to the definition of discrete adic spaces.

3.10. Definition. (a) Let Gω-adic be the geometry blueprint whose Gω-adic-analytic rings are
the analytic rings (A,A+)� for discrete Huber pairs (A,A+) and whose Gω-adic-localizations
are generated by the maps

(A,A+)� −→
(
A[1/g], A+[f1/g, . . . , fn/g]

)
�
,

where f1, . . . , fn, g ∈ π0A.
(b) A discrete adic space is a Gω-adic-analytic space. For every discrete Huber pair (A,A+), we

denote
Spa(A,A+) := AnSpecGω-adic(A,A+)�.

An immersion U ↪→ X of discrete adic spaces is a map which exhibits U as a Gω-adic-analytic
subspace of X.

(c) A discrete adic space is called classical if it can be covered by open subspaces of the form
Spa(A,A+) for static A.

3.11. Remark. The Gω-adic-localizations are generated under base change and composition by the
maps

(Z[x],Z)� −→ (Z[x, x−1],Z)� and (Z[x],Z)� −→ Z[x]�.

3.12. Definition. (a) We let Gsch denote the geometry blueprint whose Gsch-analytic rings
are precisely the analytic rings of the form A�, for discrete animated rings A, and whose
Gsch-localizations are generated by the map Z[x]� → Z[x, x−1]�.

(b) A scheme is a Gsch-analytic space. For every discrete animated ring we write

SpecA := AnSpecGsch
A�.

An open immersion U ↪→ X of schemes is a map which exhibits U as a Gsch-analytic
subspace of X.

(c) A scheme is called classical if it can be covered by open subspaces of the form SpecA where
A is static.

4. Comparison with Huber’s discrete adic spaces

4.1. At last, we shortly discuss how the analytic theory developed here compares with the classical
theory of discrete adic spaces. We will not discuss the topology on our new adic spaces but only
mention that, unlike in Huber’s theory, the localization (Z[x],Z)� → (Z[x, x−1],Z)� is not an open
immersion in our new setting. This change is necessary to make the six functor formalism work.

3A morphism of sheaves F →→ G is a cover if it is an effective epimorphism, that is, G ∼= lim−→n∈∆op Fn, where F•
denotes the Čech nerve of F → G; this is the ∞-categorical analog of saying that F ×G F ⇒ F → G is a (reflexive)
coequalizer.
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The classical theory is built via locally ringed spaces, where coverings are defined as topological
coverings. In contrast, we have defined coverings in terms of conservative pullbacks. In order to
reconcile these notions, we introduce the underlying set |X| of a discrete adic space X as

|X| :=
{

Spa(K,K+)→ X

∣∣∣∣ K+ is a valuation ring
with fraction field K

}/
∼
.4

The inclusion of classical discrete adic spaces into discrete adic spaces admits a right adjoint,
written X 7→ X0, which is completely determined by the assignment Spa(A,A+) 7→ Spa(π0A,A

+).
As any morphism A → K factors through π0A, it is clear from the definition that |X| ∼= |X0|
depends only on the underlying classical discrete adic space.

Let us describe an important family of subsets which, in Huber’s theory, would give a basis of a
topology on |X0|. For this, we may assume X0 = Spa(A,A+), where A is a classical ring. Consider
the rational domains

U
(T
g

)
:= Spa

(
A[1/g], A+[t1/g, . . . , tn/g]

)
,

where T = {t1, . . . , tn} ⊆ π0A is a finite subset; note that we may replace T with T ∪ {g}
without changing the rational domain. A point x ∈ |X| is given by a map π0A → K sending
A+ → K+; composing with the valuation K → Γ ∪ {0}, we obtain a multiplicative valuation
|(·)(x)| : π0A → Γ ∪ {0} such that |f(x)| ≤ 1 for all f ∈ A+. Conversely, any such valuation
corresponds to a point of |X0|. We then have

x ∈
∣∣∣∣U(Tg )

∣∣∣∣ ⇐⇒ |ti(x)| ≤ |g(x)| for all i = 1, . . . , n.

Our comparison result relies on the following “adic Nullstellensatz”.
4.2. Proposition. Let A be a discrete animated ring.

(a) One has an injective map{
integrally closed

subrings A+ ⊆ π0A

} {
subsets of |Spa(A,Z)|

}
A+ |Spa(A,A+)|.

(b) Let α : (A,A+) → (B,B+) be a map of discrete Huber pairs such that the induced map
|Spa(B,B+)| → |Spa(A,A+)| factors over |U |, where U := U( f1,...,fng ) ⊆ Spa(A,A+) and
f1, . . . , fn, g ∈ π0A generate the unit ideal. Then Spa(α) factors uniquely through U .

Proof. We show (a). We may assume A ∼= π0A. Let R ⊆ A be an integrally closed subring. It suffices
to show that the inclusion R ⊆ R :=

{
f ∈ A

∣∣ |f(x)| ≤ 1 for all x ∈ |Spa(A,R)|
}
is an equality.

Assume there is f ∈ R with f /∈ R. Consider R[f−1] ⊆ A[f−1]. Note that f /∈ R[f−1], since R
is integrally closed and f /∈ R. Hence, there exists a prime ideal p of R[f−1] containing f−1. Let
q ⊆ p be a minimal prime ideal. The injection R[f−1]q ↪→ A[f−1]q shows A[f−1]q 6= 0. Hence, there
exists a prime ideal q̃ of A[f−1] so that q̃ ∩R[f−1] ⊆ q; as q is minimal, we even have equality. Let
K be the fraction field of A[f−1]/q̃ and K+ ⊆ K a valuation ring dominating (R[f−1]/q)p.5 The
canonical map (A,R)→ (K,K+) sends f into K rK+. The corresponding point x ∈ |Spa(A,R)|
then satisfies |f(x)| > 1, which contradicts f ∈ R. This shows R = R.

For (b), we first show α(g) ∈ B×. If α(g) were not invertible, we would find a prime ideal p
of B containing α(g). Denoting K the fraction field of B/p, we obtain a point x ∈ |Spa(B,B+)|
corresponding to the natural map (B,B+)→ (K,K) such that |α(g)(x)| = 0. But this contradicts
the assumption that |Spa(B,B+)| maps into |U |. Hence, α factors through a map A[ 1

g ]→ B. Since
also |α(fi/g)(x)| ≤ 1 for all x ∈ |Spa(B,B+)|, we deduce α(fi/g) ∈ B+ from (a). Hence α factors
through

(
A
[

1
g

]
, A+

[
f1
g , . . . ,

fn
g

])
as desired. �

4Here, we say x1 : Spa(K1,K
+
1 ) → X and x2 : Spa(K2,K

+
2 ) → X are equivalent, x1 ∼ x2, if there exists a

valuation ring L+ with fraction field L and maps ϕi : Spa(L,L+) → Spa(Ki,K
+
i ) such that x1ϕ1 = x2ϕ2 and

mL+ ∩K+
i = m

K+
i
, for i = 1, 2.

5See https://en.wikipedia.org/wiki/Valuation_ring#Dominance_and_integral_closure or [Sta22, Lemma
00IA] for the existence of K+.

https://en.wikipedia.org/wiki/Valuation_ring#Dominance_and_integral_closure
https://stacks.math.columbia.edu/tag/00IA
https://stacks.math.columbia.edu/tag/00IA
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If t1, . . . , tn ∈ π0A generate the unit ideal, then it is clear that
{
|U( t1,...,tnti

)|
}n
i=1

covers |X0|. In
fact, we have:

4.3. Lemma ([Sch19, Lemma 10.4]). Let (A,A+) be a discrete Huber pair and X = Spa(A,A+).
Assume that U = {U1, . . . , Un} is a covering of |X| by rational subsets. Then there exist s1, . . . , sN ∈
π0A generating the unit ideal such that {U( s1,...,sNsj

)}Nj=1 refines U .

Proof. We may assume A = π0A. First assume that we can write Ui = U(Ti

gi
), where gi ∈ Ti and

Ti ⊆ A is a finite subset generating the unit ideal. Let T be the image of the multiplication map
T1×· · ·×Tn → A, and let S ⊆ T be the subset of those elements t1 · · · tn with ti = gi for some i. We
claim that {U(Ss )}s∈S is the desired refinement of U . Note that (S) = (g1, . . . , gn), because each Ti
generates the unit ideal. If (g1, . . . , gn) were a proper ideal, it would be contained in a maximal ideal
m of A. But then the point Spa(A/m, A/m)→ X is not contained in any |Ui|, which contradicts the
fact that U is a covering of |X|. Therefore, S generates the unit ideal in A. Let s ∈ S be arbitrary.
Observe that the obvious inclusion |U(Ts )| ⊆ |U(Ss )| is an equality: let x ∈ |U(Ss )| and t ∈ T ; then
x ∈ Ui, for some i, and hence, denoting st ∈ S the element obtained from t by changing the i-th
factor to gi, we deduce |t(x)| ≤ |st(x)| ≤ |s(x)|. This proves the equality, and then Proposition 4.2.(a)
implies U(Ts ) = U(Ss ). Finally, since s contains some factor gi, we have U(Ts ) ⊆ U(Ti

gi
) = Ui.

It remains to show that any point x ∈ |Ui| closed with respect to the topology generated by the
rational domains is contained in a rational domain of the form |U(Tg )| ⊆ |Ui|, where g ∈ T and
T ⊆ A generates the unit ideal. Write x : (A,A+)→ (K,K+) and let p maximal among the prime
ideals of K+ such that x(A) ⊆ K+

p . We obtain a new point y : (A,A+)→ (K+
p /pK

+
p ,K

+/p). Note
that, if f, g ∈ A are such that y factors through (A,A+) → (A[ 1

g ], A+[ fg ]), the same is true for x.
This means that y is a specialization of x. As x is closed, we deduce p = {0}; in other words: x(A)

and K+ generate K as a ring. Writing Ui = U
(
f1,...,fn

g

)
, we deduce from x ∈ |Ui| that x extends

to a map A[ 1
g ]→ K. By what we have just shown, there exists h ∈ A with |h(x)| ≥ | 1g (x)|, that is,

|gh(x)| ≥ 1. Hence, x ∈ |U
(
f1h,...,fnh,1

gh

)
| ⊆ |Ui|, which is what we wanted to prove. �

4.4. Proposition. A finite family {(A,A+)� → (Bi, B
+
i )�}i of Gω-adic-localizations is a Gω-adic-

analytic cover if and only if the U = {|Spa(π0Bi, B
+
i )|}i forms a cover of |Spa(π0A,A

+)|.

Proof. Assume that U is a cover. We show that the family of functors

M 7−→M
∣∣
Spa(Bi,B

+
i )

:= M ⊗(A,A+)� (Bi, B
+
i )�

is conservative. By refining U , we may by Lemma 4.3 assume Spa(Bi, B
+
i ) = U( f1,...,fnfi

), where
f1, . . . , fn ⊆ π0A generate the unit ideal.

Let M ∈ D�(A,A+) such that M ⊗(A,A+)� (Bi, B
+
i )� = 0 for all i. It suffices to show M [ 1

fi
] = 0

for all i. In other words, we may replace (A,A+) with (A[ 1
fi

], A+[ 1
fi

]) and thus assume that fi = 1.
For notational convenience, we assume i = n. We prove M = 0 by induction on n.

For n = 2, the covering is given by |U( 1
f )| = {1 ≤ |f(x)|} and |U( f1 )| = {|f(x)| ≤ 1}. This

covering arises by base change from the covering of |Spa(Z[t],Z)| by |Spa(Z[t, t−1],Z[t−1])| and
|Spa(Z[t],Z[t])|. Note that M ⊗(Z[t],Z)� (Z[t, t−1],Z[t−1])� = 0 if and only if M is a ZJtK-module and
M ⊗(Z[t],Z)� Z[t]� = 0 if and only if M is a Z((t−1))-module (Exercise 1.17). Thus, the assumption
means that M is a module over C := ZJtK⊗(Z[t],Z)� Z((t−1)). We claim C = 0 to finish the base case.
Using the resolution (1.12) of Z((t−1)), we need to see that the top map in the commutative diagram

ZJtK⊗(Z[t],Z)�

(
Z[t]⊗Z ZJyK

)
ZJtK⊗(Z[t],Z)�

(
Z[t]⊗Z ZJyK

)
ZJtK⊗Z� ZJyK ZJt, yK ZJt, yK ZJtK⊗Z� ZJyK

id⊗[·(t⊗y−1⊗1)]

∼= ∼=

∼= ·ty−1

∼= ∼=

is an isomorphism; but this is clear since all other maps are isomorphisms. This shows C = 0 and
hence M = 0.

Let now n > 2. By the base case, it suffices to show M
∣∣
U( 1

f1
)

(a)
= 0

(b)
= M

∣∣
U(

f1
1 )

.
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Ad (a): Replacing M
∣∣
U( 1

f1
)
by M and (A[1/f1], A+[1/f1]) by (A,A+), we may assume f−1

1 ∈ A+.

For any i ≤ n− 1 we have

Ui = U

(
f1, . . . , fn−1, 1

fi

)
= U

(
f1, . . . , fn−1

fi

)
= U

(
1, f2/f1, . . . , fn−1/f1

fi/f1

)
,

which means that {|Ui|}n−1
i=1 forms a cover. By the induction hypothesis, we deduce M = 0.

Ad (b): Replacing M
∣∣
U(

f1
1 )

by M and (A,A+[f1]) by (A,A+), we may assume f1 ∈ A+. For any
i = 2, . . . , n we have

Ui = U

(
f1, . . . , fn−1, 1

fi

)
= U

(
f2, . . . , fn−1, 1

fi

)
,

which means that {|Ui|}ni=2 forms a cover. By the induction hypothesis, we deduce M = 0.
Thus, we have shown that M

∣∣
Ui

= 0, for all i, implies M = 0.

For the converse, assume that the family {Spa(Bi, B
+
i ) → Spa(A,A+)}i is a Gω-adic-analytic

cover but that U does not cover |Spa(A,A+)|. Let K+ be a valuation ring with fraction field K and
let (A,A+)� → (K,K+)� be a morphism which does not factor through any (Bi, B

+
i )�. Then, the

family {(K,K+)� → (K,K+)� ⊗(A,A+)� (Bi, B
+
i )�}i is a Gω-adic-analytic cover but not a cover of

|Spa(K,K+)|. We are thus reduced to the case (A,A+) = (K,K+). Now, each (Bi, B
+
i ) is of the

form (K,K+[f1, . . . , fn]) and two such analytic rings are the same if the corresponding f1, . . . , fn
generate the same valuation subring of K.

We make the following observation: If K+ ⊆ A,B ⊆ K are valuation subrings, then A ⊆ B or
B ⊆ A. Indeed, if B ⊆ A, there is nothing to show. Otherwise, take b ∈ B rA. For any a ∈ A we
have a

b ∈ K
+ or b

a ∈ K
+, since K+ is a valuation ring. But if b

a ∈ K
+ ⊆ A, then also b = a · ba ∈ A

contradicting the choice of b. Hence, we have a
b ∈ K

+ ⊆ B and then a = b · ab ∈ B, that is, A ⊆ B.
By the observation, we may assume that the Gω-adic-analytic cover consists of a single map

(K,K+)→ (K,K+
0 ). Now, we have an adjunction

− ⊗(K,K+)�(K,K
+
0 )� : D�(K,K+) D�(K,K+

0 ) : fgt,

where − ⊗(K,K+)�(K,K
+
0 )� is conservative and fgt is fully faithful. It follows formally that fgt

is an equivalence, which shows (K,K+)� = (K,K+
0 )�. Since the functor (A,A+) 7→ (A,A+)� is

fully faithful (Proposition 2.10.(a)), we deduce K+ = K+
0 . But then |Spa(K,K0)| = |Spa(K,K+)|,

yielding the desired contradiction. �
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