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Preface

These are the notes for a lecture course on triangulated and derived categories offered in the Winter
Term 2024/25 at the University of Paderborn. It is the continuation of a course on homological
algebra, and consequenly the course is aimed at students with some basic knowedge of category
theory (e.g., Yoneda lemma, (co)limits, adjunctions) and abelian categories. The lecture focuses on
the theory rather than examples, and so it helps for the understanding if the reader has had some
exposure to classical derived functors. Nevertheless, the aim of these lectures is to give a systematic
and largely self-contained treatment of triangulated and derived categories.
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Introduction

The evolution of derived functors and the derived category

This section serves an entirely motivational purpose addressed at an audience that is already familiar
with the basic notions of homological algebra. We want to trace the history of derived functors and
the ideas that led to the definition of the derived category. To keep the exposition reasonably short
there will be no proofs, but most of the unproven statements are straightforward suitable exercises
for the interested reader (with one exception which is indicated below).

Let F : C → D be a left exact functor between abelian categories. The non-exactness of F means
that we lose information by applying F to exact sequences. To recover the lost information, one
can try to define a family of functors R•F = {RiF : C → D}i≥0 such that R0F ∼= F and every short
exact sequence 0→ A→ B → C → 0 gives rise to a long exact sequence

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ R2F (A)→ · · ·

such that R•F is universal in a precise sense (see Definition 0.5 below).
Following [Buc60] or [CE56, Chapter III], let us take a naive approach via “satellites”. Let A ∈ C.

Then for every short exact sequence E = [0→ A
f−→ P

g−→ Q→ 0] in C we can define a new object
SEF (A) ∈ D as the cokernel

F (P )
F (g)−−−→ F (Q) −→ SEF (A)→ 0.

Of course, SEF (A) depends on the choice of P and f . But one easily checks that if we have a
morphism

(0.1)
E : 0 A P Q 0

E ′ : 0 A P ′ Q′ 0

f

α

g

α′

f ′ g′

of short exact sequences (where the left vertical map is the identity on A), we obtain a morphism

θEE′ : SEF (A)→ SE′F (A).

Exercise 0.1. Show that θEE′ is independent of α (and α′).

iii



iv INTRODUCTION

We now define the category1 IA whose objects are short exact sequences E = [0 → A → P →
Q → 0] and where we have a unique morphism E ≤ E ′ if and only if there exists a morphism of
short exact sequences as in (0.1).

Exercise 0.2. Verify the following statements:

• IA is a directed class, i.e., for all E , E ′ ∈ IA, there exists E ′′ ∈ IA such that E ≤ E ′′ and
E ′ ≤ E ′′.

• The assignment IA → D, E 7→ SEF (A) is a functor.

We may thus define

SF (A) := lim−→
E∈IA

SEF (A) ∈ D

whenever the colimit exists.

Exercise 0.3. Let A ∈ C and suppose that there exists a monomorphism A ↪→ I into an injective
object of C. Show that E = [0 → A → I → A/I → 0] is the unique maximal element in IA. We
conclude that the canonical map SEF (A) ∼−→ SF (A) is an isomorphism in D (and in particular
SF (A) exists).

Exercise 0.4. (i) Show that the assignment A 7→ SF (A) defines an additive functor C → D.

(ii) (Difficult) Suppose that the formation of filtered colimits in D is exact. Show that for all short
exact sequences 0→ A→ B → C → 0 in C, we obtain an exact sequence

F (A)→ F (B)→ F (C)→ SF (A)→ SF (B)→ SF (C).

The construction of SF actually makes sense if F is only required to be “half exact”, meaning
that, if 0 → A → B → C → 0 is a short exact sequence, then F (A) → F (B) → F (C) is exact.
Defining R0F := F and RnF := S(Rn−1F ) for all n ≥ 1 then achieves the desired construction of
the family R•F . In fact, the construction shows that R•F is a universal δ-functor in the following
sense:

Definition 0.5. Let C and D be abelian categories. A δ-functor T • : C → D consists of the following
data:

(i) for every i ∈ Z≥0 a functor T i : C → D;

(ii) for every i ∈ Z≥0 and every short exact sequence

E = [0→ A→ B → C → 0](0.2)

in C a morphism δiE : T i(C)→ T i+1(A), called the connecting homomorphism;

these data are required to satisfy the following conditions:

1a partially ordered class, really
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(a) for all short exact sequences (0.2) the sequence

0 T 0(A) T 0(B) T 0(C)

T 1(A) T 1(B) T 1(C)

T 2(A) T 2(B) · · ·

δ0
E

δ1
E

is exact—it is called the long exact sequence associated with (0.2);

(b) Naturality: for every morphism

E : 0 A B C 0

E ′ : 0 A′ B′ C ′ 0

of short exact sequences, and for all i ∈ Z≥0, the diagram

T i(C) T i+1(A)

T i(C ′) T i+1(A′)

δiE

δiE′

is commutative.

Moreover, T • is called universal if, additionally, it satisfies the following condition:

(c) Universality: for every δ-functor T̃ • : C → D and every natural transformation α0 : T 0 → T̃ 0,
there exist unique natural transformations αi : T i → T̃ i (i ≥ 0) such that for every short exact
sequence (0.2) and all i ≥ 0 the diagram

T i(C) T i+1(A)

T̃ i(C) T̃ i+1(A)

δiE

αiC αi+1
A

δ′iE

is commutative.

In other words: a δ-functor T • : C → D is universal if and only if for every other δ-functor
T̃ • : C → D, every natural transformation T 0 → T̃ 0 extends uniquely to a morphism T • → T̃ • (for
the obvious notion of morphism of δ-functors). As usual, it follows that the extension of T 0 to a
universal δ-functor is unique up to unique isomorphism.

A useful criterion to check whether a δ-functor is universal is the following:
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Exercise 0.6. Recall that an additive functor T : C → D is called effaceable if for all A ∈ C there
exists a monomorphism ι : A→ I in C such that T (ι) = 0.

Let T • : C → D be a δ-functor and suppose that for all i ≥ 1 the functor T i is effaceable. Show
that T • is universal.

The above construction shows that RiF (I) = 0 for all i ≥ 1, whenever I is injective. Hence, if C
has enough injectives, then R•F is indeed a universal δ-functor, which is called the derived functor
of F . The derived functors R•F can be succinctly computed as follows:

Exercise 0.7. Let F : C → D be a left exact functor and suppose that C has enough injectives. Let
A→ I• be an injective resolution of A ∈ C. Show that RiF (A) ∼= Hi(F (I•)) for all i ≥ 0.

However, this definition of derived functors poses its own set of challenges:

• Exercise 0.7 indicates that the δ-functor R•F is actually just a shadow of a more conceptual
entity. It suggests that the derived functor should actually be defined as the complex F (I•),
because passing to cohomology and remembering the connecting homomorphisms still loses
information. One then needs to construct the correct category of complexes on which derived
functors can be defined; this is the derived category.

• Let F : C → D and G : B → C be two left exact functors, and suppose that B and C have
enough injectives. Can we describe R•(F ◦G) in terms of R•F and R•G? In good situations
we can recover one from the other, but the answer is still complicated: If for every injective
object I ∈ B we have RiF (G(I)) = 0 for all i ≥ 1, then there is a converging spectral sequence

Ei,j2 = RiF (RjG(B)) =⇒ Ri+j(F ◦G)(B)

for all B ∈ B; and in even better situations the spectral sequence is manageable. But as soon
as we want to compute the derived functor of the composition of three left exact functors, we
are in trouble. The language of derived categories simplifies the picture.

Keller [Kel96] suggests that the considerations leading Grothendieck to the definition of the
derived category of C are the following: Let F : C → D be a left exact functor. If A → I• and
A → J• are two injective resolutions of A ∈ C, then there is a homotopy equivalence I• '−→ J•

extending the identity on A. Then F (I•)→ F (J•) is a homotopy equivalence, and in particular a
quasi-isomorphism. Instead of injective resolutions it is often more practical to compute R•F (A)
using an F -acyclic resolution A → X•, that is, a resolution where each Xi satisfies RjF (Xi) = 0
for all j ≥ 1. In that case, the identity on A still extends to a quasi-isomorphism X• → I• such
that the map F (X•)→ F (I•) is a quasi-isomorphism.

These observations suggest to construct the derived category D(C) from the category C(C) of
complexes by formally inverting all quasi-isomorphisms. The derived functor is then the “universal
extension” of F to a functor RF : D(C)→ D(D).

But why should we care about this abstract definition of derived functors? The answer is that
this new formalism allows for very simple formulations and proofs of classical results, which in the
traditional language would be a complete mess. We illustrate this with the (rather extreme) example
of the Künneth relations. Let X and Y be compact topological spaces and R a commutative ring
with 1. Let F ∈ ModR(X) and G ∈ ModR(Y ) be sheaves of R-modules on X and Y , respectively.
Then we have:
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Theorem 0.8 (classical Künneth formula). (1) Suppose R = Z and that either F or G is torsion-
free. Then we have split short exact sequences

0 −→
⊕
p+q=n

Hp(X,F)⊗Hq(Y,G)→ Hn(X × Y,F ⊗ G)→
⊕

p+q=n+1

TorZ1
(
Hp(X,F),Hq(Y,G)

)
−→ 0

(2) In general, there exist two spectral sequences

′Ep,q2 =
⊕
r+s=q

TorR−p
(
Hr(X,F),Hs(Y,G)

)
,

′′Ep,q2 = Hp(X × Y, TorR−q(F ,G)),

which have isomorphic abutments.

Compare this with the following version:

Theorem 0.9 (derived Künneth formula). There is a natural isomorphism in the derived category
D(R) of R-modules

RΓ(X,F)
L
⊗
R

RΓ(Y,G) ∼−→ RΓ(X × Y,F
L
⊗
R
G),

where RΓ(X,−) denotes the right derived functor of the global sections functor and ⊗L
R denotes the

left derived functor of the tensor product functor.

It turns out that the derived category D(C) is not abelian in general, but instead carries the
structure of a triangulated category : It is canonically endowed with a shift functor and “triangles”
which provide a formalism akin to that of abelian categories. The idea is that the localization
functor C(C)→ D(C) factors through the homotopy category K(C) of complexes. The advantage of
working with the intermediate category K(C) is (at least) two-fold: for one, K(C) has the structure
of a triangulated category which is inherited by D(C). On ther other hand, K(C) admits a “calculus
of fractions” for quasi-isomorphisms, and as a consequence it turns out that D(C) is actually locally
small.

The goal of these lectures is to provide a detailed treatment of derived and triangulated categories.





Chapter 1

Recollections

§1. Additive Categories

Although we expect the reader to know what categories and abelian categories are, the treatment
of additive categories in the literature is unsatisfactory, which is why we will spend some time on
discussing them.

Definition 1.1. Let C be a category with finite products, and denote by ∗ the terminal object.

(i) A monoid in C is a tuple (M, e,m) consisting of the following data:

(a) an object M ∈ C;
(b) a map e : ∗ →M in C, called the identity or unit ;
(c) a map m : M ×M →M in C, called the multiplication;

these data are required to make the following diagrams commute:

M × (M ×M) (M ×M)×M M ×M

M ×M M

∼

id×m

m×id

m

m

M ∗ ×M M ×M

M × ∗

M ×M M

∼

∼

e×id

m

id×e

m

The monoid (M, e,m) is called commutative if in additionm◦s = m, where s : M×M →M×M
is the automorphism switching the factors.

A morphism (M, e,m) → (M ′, e′,m′) of monoids consists of a map f : M → M ′ in C such
that the diagrams

M ×M M ∗ M

M ′ ×M ′ M ′ M ′

m

f×f f

e

e′
f

m′

commute.

1
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We denote by Mon(C) (resp. CMon(C)) the category of monoids (resp. commutative monoids)
in C.

(ii) A monoid (M, e,m) in C is called a group if the map

(m,pr2) : M ×M ∼−→M ×M,

(a, b) 7−→ (a · b, b)

is an isomorphism in C. A commutative group in C is a group which is commutative as a
monoid.

We define Grp(C) ⊆ Mon(C) as the full subcategory of groups in C. Similarly, we write
CGrp(C) ⊆ CMon(C) for the full subcategory of commutative groups in C.

Instead of (M, e,m) we will usually just writeM to denote a monoid/group and leave the identity
and multiplication implicit.

Example 1.2. (i) A (commutative) monoid in C = Set is a (commutative) monoid in the tradi-
tional sense, i.e., a tuple (M, e, ·) consisting of a set M , an associative (commutative) binary
operation M ×M →M , (a, b) 7→ ab and a two-sided neutral element e ∈M .

Similarly, a (commutative) group in Set is a (commutative) group in the traditional sense.

(ii) What is a monoid in the category C = Ab of abelian groups? We claim that on every M ∈ Ab
there exists a unique structure of a commutative group in Ab: Since ∗ = {0} is also initial,
there is a unique map e : {0} → M (namely the one with image 0 ∈ M). As the product
× is also a coproduct in Ab, the multiplication m : M ×M → M is uniquely determined by
its restrictions to {0} ×M and M × {0}, where it is required to be the identity. But this
means m(a, b) = a+ b for all a, b ∈M . So the structure (M, e,m) just encodes the structure
of being an abelian group. Moreover, every morphism in Ab is automatically a morphism of
commutative groups in Ab.

To summarize, we have CGrp(Ab) = Grp(Ab) = CMon(Ab) = Mon(Ab) = Ab.

The last example suggests to axiomatize those categories for which each object is canonically
endowed with the structure of a commutative group.

Definition 1.3. Let C be a category.

(a) A zero object is an object 0 ∈ C which is both inital and final.

In the case where C admits a zero object 0, we make the following trivial observations:

• Every initial (resp. final) object of C is a zero object.1

• For all M,N ∈ C the set HomC(M,N) has a distinguished element given by the unique
map M → 0 → N ; it is called the zero morphism and is also denoted by 0. Moreover,
for every other morphism f in C we have 0 ◦ f = f ◦ 0 = 0.

1In the literature, C is called pointed if it admits a zero object.
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(b) Assume that C admits a zero object 0. Let M,N ∈ C such that the product M × N exists.
We say that M ×N is a biproduct , and write

M ⊕N := M ×N,

if the canonical maps iM : M = M×0→M×N and iN : N = 0×N →M×N exhibitM×N
as a coproduct in C. In other words, M tN exists and the map (iM , iN ) : M tN ∼−→M ×N
is an isomorphism.

We say that C has biproducts if C admits a zero object and finite products, and every product
is a biproduct.

Lemma 1.4. Let C be a category with biproducts. Then we have CMon(C) = Mon(C) = C.

Proof. The argument is the same as in Example 1.2(ii).

Definition 1.5. Let C be a category which has biproducts (and in particular a zero object 0).

(i) C is called additive if every M ∈ C is a (commutative) group when endowed with its canonical
commutative monoid structure.

(ii) A functor F : C → C′ between additive categories is called additive if F preserves finite
products. Equivalently, the canonical maps F (M ×N) ∼−→ F (M)× F (N) and F (∗) ∼−→ ∗ are
isomorphisms, for all M,N ∈ C.

Example 1.6. (i) We have seen above that Ab is an additive category.

(ii) More generally, for every ring R, the category Mod(R) of R-modules is additive.

(iii) Let X be a topological space. Then the category PSh(X,Ab) of presheaves with values in
abelian groups is additive. Similarly, the full subcategory Shv(X,Ab) ⊆ PSh(X,Ab) of sheaves
with values in Ab is additive.

Lemma 1.7. Let F : C → D be a functor which preserves finite products. Then F preserves
(commutative) monoids/groups. In other words, F induces a functor

Mon(C) −→ Mon(D)

which restricts to functors CMon(C)→ CMon(D), Grp(C)→ Grp(D), and CGrp(C)→ CGrp(D).

Proof. If (M, e,m) is a monoid in C, we obtain a monoid (F (M), eF (M),mF (M)) in D by setting

eF (M) : ∗ ∼−→ F (∗) F (e)−−−→ F (M) and mF (M) : F (M) × F (M) ∼−→ F (M ×M)
F (m)−−−→ F (M). Since F

preserves finite products (and in particular the terminal object) and the definition of “monoid” is
entirely diagrammatic, it is straightforward to check that F (M) is a monoid. More precisely, we
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have the following commutative diagrams:

(
F (M)× F (M)

)
× F (M) F (M)×

(
F (M)× F (M)

)
F (M)× F (M ×M) F (M)× F (M)

F (M ×M)× F (M) F
(
(M ×M)×M

)
F
(
M × (M ×M)

)
F (M ×M)

F (M)× F (M) F (M ×M) F (M)

∼

∼

mF (M)×id

∼

id×mF (M)

id×F (m)

∼ ∼ mF (m)

F (m)×id

∼

F (m×id)

∼ F (id×m)

F (m)

∼

mF (m)

F (m)

and

F (M) ∗ × F (M) F (∗)× F (M) F (M)× F (M)

F (M)× ∗ F (M) F (∗ ×M) F (M ×M)

F (M)× F (∗) F (M × ∗)

F (M)× F (M) F (M ×M) F (M).

∼

∼

∼

∼

eF (M)×id

∼

F (e)×id

∼

∼

∼

id×eF (M)
∼

∼ F (e×id)

F (m) mF (M)

id×F (e)

∼

F (id×e)

∼

mF (M)

F (m)

Example 1.8. Let C be a category with finite products. For every C ∈ C the functor

HomC(C,−) : C → Set

preserves finite products. Hence, Lemma 1.7 shows that for every (commutative) monoid/group M
in C, the set HomC(C,M) becomes a (commutative) monoid/group in Set.

The neutral element is the unique map C → ∗ e−→ M . For morphisms f, g : C → M in C, their
multiplication m(f, g) is given by the composite C

(f,g)−−−→M ×M m−→M .

Corollary 1.9. Let C be a category with biproducts. Then C is additive if and only if for all
M,N ∈ C the commutative monoids HomC(M,N) are abelian groups.

Moreover, if this is the case, then the composition maps

HomC(M,N)⊕HomC(L,M) −→ HomC(L,N),

(f, g) 7−→ f ◦ g

are bilinear.
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Proof. The “only if” direction is clear from Example 1.8. Conversely, suppose that all Hom spaces
HomC(M,N) are abelian groups. For an arbitrary N ∈ C we have to show that the map

(1.1) N ⊕N (m,pr2)−−−−−→ N ⊕N

is an isomorphism in C. Since for each M ∈ C, HomC(M,N) is an abelian group, the top horizontal
map in the diagram

HomC(M,N)⊕HomC(M,N) HomC(M,N)

HomC(M,N ⊕N) HomC(M,N)

(m,pr2)

∼

Hom(M,(m,pr2))

is an isomorphism. Hence, the lower horizontal map is an isomorphism. By the Yoneda lemma, we
conclude that (1.1) is an isomorphism. In other words, N is a group. Hence, C is additive.

We now prove that the composition maps are bilinear. Since HomC(L,−) enhances to a functor
C = CGrp(C) → CGrp(Set) = Ab by Example 1.8, we deduce that for every morphism f : M → N
in C the map HomC(L, f) : HomC(L,M) → HomC(L,N) is additive. In other words, we have
f ◦ (g1 + g2) = f ◦ g1 + f ◦ g2 for all g1, g2 ∈ HomC(L,M).

The fact that (f1 + f2) ◦ g = f1 ◦ g + f2 ◦ g follows from the commutativity of the diagram

M

L N ⊕N N.

(f1,f2)

f1+f2g

(f1◦g,f2◦g)

f1◦g+f2◦g

m

Exercise 1.10. Let F : A → B be a functor between additive categories and assume that F preserves
binary products, i.e., F (M ×N) = F (M)× F (N) for all M,N ∈ A.

(i) Show that for all M,N ∈ C the maps HomA(M,N)→ HomB(F (M), F (N)) are additive.

(ii) Let M ∈ B. Show that M = 0 if and only if idM = 0 in HomB(M,M).

(iii) Show that F (0) = 0 and conclude that F is an additive functor.

Remark 1.11. Let C be a category with biproducts.

(a) LetM,N ∈ C. Then the biproductM⊕N comes with inclusions iM = (idM , 0) : M ↪→M⊕N ,
iN = (0, idN ) : N ↪→M ⊕N and projections pM : M ⊕N →M , pN : M ⊕N → N such that
the following relations are satisfied:

pM ◦ iM = idM , pN ◦ iN = idN ,

pM ◦ iN = 0, pN ◦ iM = 0,

idM⊕N = iM ◦ pM + iN ◦ pN .

These data actually characterize M ⊕N as the (bi)product.
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Indeed, let Y ∈ C and let πM : Y → M , πN : Y → N be two maps. We need to show that
there exists a unique map f : Y →M ⊕N such that pM ◦ f = πM and pN ◦ f = πN . For the
uniqueness, let f : Y →M ⊕N be any map with pM ◦ f = πM and pN ◦ f = πN . Then

f = idM⊕N ◦ f = (iM ◦ pM + iN ◦ pN ) ◦ f
= iM ◦ pM ◦ f + iN ◦ pN ◦ f = iM ◦ πM + iN ◦ πN ,

which proves uniqueness. We now check that f = iM ◦πM +iN ◦πN defines a map Y →M⊕N
with the required properties:

pM ◦ f = pM ◦
(
iM ◦ πM + iN ◦ πN

)
= πM ◦ iM ◦ πM + pM ◦ iN ◦ πN

= idM ◦ πM + 0 ◦ πN = πM ,

and similarly pN ◦ f = πN .

(b) Let A1, . . . , An, B1, . . . , Bm ∈ C. Let iAj : Aj ↪→
⊕n

i=1Ai, iBl : Bl ↪→
⊕m

k=1Bk be the
inclusions and pAj :

⊕n
i=1Ai →→ Aj , pBl :

⊕m
k=1Bk →→ Bl the projections characterizing the

biproducts as in (a). Then the map

HomC

( n⊕
i=1

Ai,

m⊕
k=1

Bk

)
∼−→

n⊕
i=1

m⊕
k=1

HomC(Ai, Bk),

f 7−→
(
pBk ◦ f ◦ iAi

)
k,i
,

n∑
i=1

m∑
k=1

iBk ◦ fki ◦ pAi ←− [ (fki)k,i

is an isomorphism of abelian groups. Under this isomorphism, morphisms are composed like
matrices. Indeed, given C1, . . . , Cr ∈ C and matrices (fki)k,i ∈

⊕n
i=1

⊕m
k=1 HomC(Ai, Bk) and

(glk)l,k ∈
⊕m

k=1

⊕r
l=1 HomC(Bk, Cl), then we compute the composite as

(glk)l,k ◦ (fki)k,i ↔
( r∑
l=1

m∑
k=1

iCl ◦ glk ◦ pBk
)
◦
( m∑
k′=1

n∑
i=1

iBk′ ◦ fk′i ◦ pAi
)

=

r∑
l=1

m∑
k=1

m∑
k′=1

n∑
i=1

iCl ◦ glk ◦pBk ◦ iBk′︸ ︷︷ ︸
= idBk if k = k′ and = 0 otherwise

◦fk′i ◦ pAi

=

r∑
l=1

n∑
i=1

iCl ◦
( m∑
k=1

glk ◦ fki
)
◦ pAi

↔
( m∑
k=1

glk ◦ fki
)
l,i
.

For this reason, we usually treat morphisms in an additive category as matrices whenever it
is convenient.

We end this section with several examples of how to construct new additive categories from old
ones. The verification is left as an exercise for the reader.
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Example 1.12. (i) Let A be an additive category and A′ ⊆ A a full subcategory which is closed
under biproducts. Then A′ is additive.

(ii) If A is an additive category, then so is its opposite category Aop. (Hint: Use Corollary 1.9.)

(iii) If A and B are additive categories, then so is A× B.
(iv) If C is a category and A is an additive category, then the functor category Fun(C,A) is additive.

§2. The Homotopy Category of Complexes

In view of homological algebra, the most important categories associated with an additive category
are the category of complexes and its homotopy category.

Definition 2.1. Let A be an additive category. A complex in A is a tuple (A•, d•) consisting of
objects Ai ∈ A and morphisms di : Ai → Ai+1 (i ∈ Z) such that di+1 ◦ di = 0 for all i ∈ Z. The
maps di are called differentials or boundary maps. We usually denote a complex by A• instead of
(A•, d•) and depict it as

A• = [· · · → Ai−1 di−1

−−−→ Ai
di−→ Ai+1 di+1

−−−→ · · · ].

A morphism of complexes f : A• → B• consists of a collection of maps {f i : Ai → Bi}i∈Z such that
diB ◦ f i = f i+1 ◦ diA for all i ∈ Z.

We denote the category of complexes in A by C(A).

Lemma 2.2. Let A be an additive category.

(a) The category C(A) is additive.

(b) For every n ∈ Z the shift functor

[n] : C(A) −→ C(A),

A 7−→ A[n],

given by A[n]i := Ai+n and diA[n] = (−1)ndi+nA (for all i ∈ Z), is an additive automorphism.2

We have [m+ n] = [m] ◦ [n] = [n] ◦ [m] for all m,n ∈ Z.
(c) For every additive functor F : A → B the induced functor C(F ) : C(A)→ C(B) is additive.

Proof. Straightforward (observe that biproducts in C(A) are given componentwise and the group
condition can be checked on each component separately).

Variant 2.3. The following full additive subcategories of C(A) are also frequently used:

• the category C+(A) of left bounded complexes, i.e., complexes A• for which there exists i0 ∈ Z
with Ai = 0 for all i < i0:

A• = [· · · → 0→ 0→ Ai0 → Ai0+1 → Ai0+2 → · · · ]

2Pictorially speaking, the shift functor [1] shifts a complex one space to the left.
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• the category C−(A) of right bounded complexes, i.e., complexes A• for which there exists
i0 ∈ Z with Ai = 0 for all i > i0:

A• = [· · · → Ai0−2 → Ai0−1 → Ai0 → 0→ 0→ · · · ].

• the category Cb(A) = C+(A) ∩ C−(A) of bounded complexes.

Note that each superscript ∗ ∈ {−,+, b}, the statements of Lemma 2.2 apply to C∗(A).

Definition 2.4. Let A be an additive category. A morphism f : A• → B• in C(A) is called null
homotopic, written f ' 0, if there exists a collection of morphisms s = {si : Ai → Bi−1}i∈Z in A
such that

f i = si+1diA + di−1
B si

for all i ∈ Z; in this case s is called a null homotopy of f :

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1 Bi Bi+1 · · ·

fi−1

di−1

si
fi

di

si+1

di+1

fi+1

di−1 di

A homotopy between two morphisms f, g : A• → B• is a null homotopy for f − g.
A complex A• is called contractible if idA• is null homotopic.

Warning 2.5. Beware that a homotopy {si : Ai → Bi−1}i∈Z does generally not constitute a
morphism of complexes A[1]→ B unless it is a null homotopy of the zero morphism!

Exercise 2.6. Let A be an additive category. Show that a complex 0 → A0 → A1 → A2 → 0 is
contractible if and only if it is isomorphic to the complex 0→ A0 → A0 ⊕A2 → A2 → 0, where the
maps are the obvious ones.

Exercise 2.7. Let A be an additive category and (A•, d) a complex.

(a) Show that d : A• → A•[1] is a morphism of complexes which is null homotopic.

(b) Suppose there exists a family {si, ti : Ai → Ai−1}i of morphisms in A such that idAi =
si−1di + di−1ti for all i ∈ Z. Show that A• is contractible. (Hint: consider the maps sidi−1ti.)

Lemma 2.8. Let A be an additive category.

(a) If f, g : A• → B• are null homotopic maps of complexes, then so is f − g. In other words, the
subset B0(A•, B•) ⊆ HomC(A)(A

•, B•) of null homotopic maps is a subgroup.

(b) Let f : A• → B• and g : B• → C• be morphisms of complexes. If one of f or g is null
homotopic, then so is g ◦ f .
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Proof. We prove (a). Let s be a null homotopy for f and t a null homotopy for g. Then the family
{si − ti}i∈Z is a null homotopy for f − g. Moreover, the zero maps {0: Ai → Bi−1} are a null
homotopy for the zero map 0: A• → B•. Hence, B0(A•, B•) is a subgroup of HomC(A)(A

•, B•).
For part (b), let s be a null homotopy for f . Then {gi−1 ◦ si}i is a null homotopy for g ◦ f , since

gif i = gisi+1diA + gidi−1
B si = gisi+1diA + di−1

C gi−1si.

The other case is similar.

Definition 2.9. Let A be an additive category. The homotopy category of A is the category K(A)
which has the same objects as C(A) and with morphism spaces given by the factor groups

HomK(A)(A
•, B•) := HomC(A)(A

•, B•)/B0(A•, B•).

The composition is given as follows: Let f : A• → B• and g : B• → C• be morphisms of complexes
representing maps [f ] : A• → B• and [g] : B• → C• in K(A). Then we put

[g] ◦ [f ] := [g ◦ f ].

The definition is independent of the choices of representatives of [f ] and [g]: Every other represen-
tative of [f ] is of the form f + f ′ for some null homotopic map f ′ : A• → B•, and similarly every
other representative of [g] is given by g + g′ for some null homotopic map g′ : B• → C•. Then we
have

(f + f ′) ◦ (g + g′) = f ◦ g + f ′ ◦ (g + g′) + f ◦ g′,

where f ′ ◦ (g+ g′) + f ◦ g′ is null homotopic by Lemma 2.8. Hence [(f + f ′) ◦ (g+ g′)] = [f ◦ g]. It is
trivial to check that composition on K(A) is associative and that [idA• ] is the identity on A• ∈ K(A).

Proposition 2.10. Let A be an additive category.

(i) The category K(A) and the quotient functor C(A)→ K(A) are additive.
(ii) For every n ∈ Z, the shift functor [n] on C(A) descends to additive automorphism

[n] : K(A) −→ K(A).

Proof. Since automorphisms preserve products, part (ii) is obvious. In order to prove (i), we first
show that K(A) admits biproducts and that the quotient functor Q : C(A)→ K(A) preserves them.

Note that K(A) is enriched in Ab, i.e., the sets HomK(A)(A
•, B•) are abelian groups and the

composition maps are bilinear. Moreover, Q is linear on Hom groups. Now, given A•, B• ∈ C(A), the
biproduct is characterized by the data (A• ⊕B•, iA, iB , pA, pB) satisfying pAiA = idA, pBiB = idB ,
pAiB = 0 = pBiA and idA⊕B = iApA + iBpB (see Remark 1.11). Since Q preserves these conditions,
it follows that Q(A•) ⊕ Q(B•) is the biproduct in K(A). Moreover, the zero complex is clearly a
zero object. It follows that K(A) and Q are additive.

Definition 2.11. Let A be an additive category and f : A• → B• a morphism of complexes. We
define the mapping cone of f as the complex Mc(f) with terms

Mc(f)i = Ai+1 ⊕Bi

and differential diMc(f) =

(
−di+1

A 0
f i+1 diB

)
.
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Example 2.12. Let A be an abelian category (see Section §3). Let f : A→ B be a morphism in
A, viewed as a morphism of complexes. Then Mc(f) is the complex [0 → A

f−→ B → 0], where B
sits in degree 0. Note that

H−1(Mc(f)) = Ker(f) and H0(Mc(f)) = Coker(f).

See Definition 3.5 for the definition of the cohomology Hi(Mc(f)).

Proposition 2.13. Let A be an additive category.

(i) Let A• ∈ C(A). Then Mc(idA•) is contractible.
(ii) Let f : A• → B• be a morphism of complexes. Then f fits into a sequence of morphisms

A•
f−→ B•

( 0
id )
−−−→ Mc(f)•

(id,0)−−−→ A[1]•.

which is exact at Mc(f)•.
(iii) Consider a diagram in C(A) with solid arrows

A• B• Mc(f)• A[1]
•

C• D• Mc(g)• C•

α

f

β

ιf

ϕ

pf

α[1]

g

s

ιg pg

and let s = {si : Ai → Di−1}i be a null homotopy of βf − gα. Then there exists a morphism
ϕ = ϕ(α, β, s) : Mc(f)→ Mc(g) making the middle and right square commutative in C(A).

Proof. Let us prove (i). We have to produce a null homotopy of the identity on Mc(idA•). To this
end, we define

si :=

(
0 idAi
0 0

)
: Mc(idA•)

i = Ai+1 ⊕Ai −→ Ai ⊕Ai−1 = Mc(idA•)
i−1.

Now, compute

si+1di + di−1si =

(
0 id
0 0

)(
−d 0
id d

)
+

(
−d 0
id d

)(
0 id
0 0

)
=

(
id d
0 0

)
+

(
0 −d
0 id

)
= idMc(id)i .

Hence, Mc(idA•) is indeed contractible. In particular, we have Mc(idA•) = 0 in K(A) and hence
Lemma 3.7 shows that Mc(idA•) is acyclic.

The fact that the maps B• → Mc(f)• and Mc(f)• → A[1]• are morphisms follows from the
following straightforward computation:(

−dA 0
f dB

)(
0
id

)
−
(

0
id

)
◦ d =

(
0
dB

)
−
(

0
dB

)
= 0

d ◦ (id, 0)− (id, 0)

(
dA[1] 0
f dB

)
= (dA[1], 0)− (dA[1], 0) = 0.
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The exactness at Mc(f)• is obvious.
For part (iii), we consider the map ϕ : Mc(f)• → Mc(g)• given by

ϕi =

(
αi+1 0
si+1 βi

)
: Mc(f)i = Ai+1 ⊕Bi → Ci+1 ⊕Di = Mc(g)i.

The computation

ϕ ◦ dMc(f) − dMc(g) ◦ ϕ =

(
α 0
s β

)(
−dA 0
f dB

)
−
(
−dC 0
g dD

)(
α 0
s β

)
=

(
−αdA 0

−sdA + βf βdB

)
−
(
−dCα 0

gα+ dDs dDβ

)
=

(
dCα− αdA 0

βf − gα− sdA − dDs βdB − dDβ

)
= 0

shows that ϕ is a morphism of complexes. It is clear that the middle and right square in the
assertion commute.

Exercise 2.14. Let A be an additive category and let f : A• → B• be a morphism in C(A).

(a) Show that the composite A• f−→ B• ↪→ Mc(f)• is null homotopic.

(b) Let g : A• → B• be another morphism which is homotopic to f . Construct an isomorphism
Mc(f) ∼−→ Mc(g) in C(A).

(c) Show that f is null homotopic if and only if f factors through ιA : A• → Mc(idA•).

§3. Abelian Categories

Notation 3.1. Let A be an additive category in which every morphism admits a kernel and a
cokernel. For a morphism f : A→ B in A we put

Coim(f) := A/Ker(f) := Coker
(
Ker(f) ↪→ A

)
(coimage)

Im(f) := Ker
(
B →→ Coker(f)

)
(image).

The map f factors as follows:

Ker(f) A B Coker(f)

Coim(f) Im(f).

p

f

f

i

The map f is called strict if f is an isomorphism.

Definition 3.2. An additive category A is called abelian if every morphism is strict and admits a
kernel and a cokernel.

Example 3.3. (i) The categories Ab, Mod(R) (for a ring R), PSh(X,Ab) and Shv(X,Ab) (for a
topological space X) are abelian categories.
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(ii) A category A is abelian if and only if its opposite category Aop is abelian.

(iii) If A is an abelian category, then so is C(A) (check that kernels and cokernels are given
componentwise).

(iv) If A is abelian, the homotopy category K(A) is generally not abelian. Concretely, will show
in Example 5.5 that K(Ab) is not abelian.

We collect the following basic properties of abelian categories:

Theorem 3.4. Let A be an abelian category.

(1) Every monomorphism is a kernel (of its cokernel) and every epimorphism is a cokernel (of
its kernel).

(2) A morphism in A is an isomorphism if and only if it is both monic and epic.

(3) Every morphism f : A → B factors uniquely (up to unique isomorphism) as A p−→ I
i−→ B,

where p is an epimorphism and i is a monomorphism.

(4) A admits finite limits and finite colimits.

One of the main reasons abelian categories were introduced was to do homological algebra.

Definition 3.5. Let A be an abelian category and let

A• = [· · · → Ai−1 di−1

−−−→ Ai
di−→ Ai+1 → · · · ]

be a complex. Note that, since di ◦ di−1 = 0, we always have an inclusion Im(di−1) ⊆ Ker(di). We
define the i-th cohomology of A• as the quotient

Hi(A•) := Ker(di)/ Im(di−1) ∈ A.

If Hi(A•) = 0 (equivalently, Im(di−1) = Ker(di)), we call A• exact at Ai. If Hi(A•) = 0 for all
i ∈ Z, we say that A• is acyclic or exact .

Example 3.6. Let A be an abelian category and let f : A→ B be a morphism.

• The sequence 0→ A
f−→ B is exact if and only if Ker(f) = 0, i.e., f is monic.

• The sequence A f−→ B → 0 is exact if and only if Coker(f) = 0 (equivalently: Im(f) = B), i.e.,
f is epic.

Lemma 3.7. Let A be an abelian category. For every i ∈ Z passing to cohomology induces additive
functors Hi : C(A) → A, which factor through K(A). In particular, contractible complexes are
acyclic.

Proof. Let f : A• → B• be a morphism of complexes. From the identity f i+1diA = diBf
i we deduce

f i(Ker(diA)) ⊆ Ker(diB) and f i+1(Im(diA)) ⊆ Im(diB) for all i ∈ Z. Hence, we obtain an induced
map

Hi(f) : Hi(A•) = Ker(diA)/ Im(di−1
A )→ Ker(diB)/ Im(di−1

B ) = Hi(B•).
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It is clear from the construction that Hi(idA•) = idHi(A•) and that if f, g are composable maps of
complexes, then Hi(f ◦ g) = Hi(f) ◦Hi(g).

We now check that Hi is additive. Given A•, B• ∈ C(A), we observe that the canonical maps
Ker(diA⊕B) ∼−→ Ker(diA)⊕Ker(diB) and Im(di−1

A⊕B) ∼−→ Im(di−1
A )⊕Im(di−1

B ) are isomorphisms, because
the differential is given componentwise. We obtain a commutative diagram

Im(di−1
A⊕B) Ker(diA⊕B) Hi(A⊕B) 0

Im(di−1
A )⊕ Im(di−1

B ) Ker(diA)⊕Ker(diB) Hi(A)⊕Hi(B) 0,

∼ ∼

where the rows are exact. From the five lemma we conclude that the dashed arrow is an isomorphism.
Hence Hi is additive.

To see that Hi factors through K(A) it suffices to show that if f : A• → B• is null homotopic,
then Hi(f) = 0. Indeed, let s be a null homotopy of f , so that f i = si+1diA + di−1

B si for all i. The
identity shows f i(Ker(diA)) ⊆ Im(di−1

B ) and hence Hi(f) is the zero map.

Definition 3.8. Let A be an abelian category. A morphism f : A• → B• of complexes is called a
quasi-isomorphism if the induced map Hi(f) : Hi(A•)→ Hi(B•) is an isomorphism for all i ∈ Z.

Exercise 3.9. Let A be an abelian category. Let f : A• → B• be a homotopy equivalence, i.e., a
morphism of complexes whose image in K(A) becomes an isomorphism. Show that f is a quasi-
isomorphism. Does the converse hold true?

Proposition 3.10. Let A be an abelian category and consider a commutative square

(3.1)
A B

A′ B′

g

f

g′

f ′

in A.

(i) The square (3.1) is a pullback if and only if the sequence 0→ A

(
f
−g
)

−−−−→ B ⊕ A′ (g′,f ′)−−−−→ B′ is
exact. If this is the case, then the induced map Ker(f) ∼−→ Ker(f ′) is an isomorphism.

(ii) The square (3.1) is a pushout if and only if the sequence A

(
f
−g
)

−−−−→ B ⊕ A′ (g′,f ′)−−−−→ B′ → 0 is
exact. If this is the case, then the induced map Coker(f) ∼−→ Coker(f ′) is an isomorphism.

Addendum: In (i) the induced map Coker(f) ↪→ Coker(f ′) is a monomorphism. In (ii) the
induced map Ker(f)→→ Ker(f ′) is an epimorphism.

Proof. We only prove (i) because (ii) is dual. The first statement is obvious by comparing the
universal properties of the pullback and the kernel. For example, if the square is a pullback and

C

(
b
−a
)

−−−−→ B ⊕A′ is a map such that g′b− f ′a = 0, then by the universal property of the pullback
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there exists a unique map C c−→ A such that fc = b and gc = a, so that C

(
b
−a
)

−−−−→ B ⊕A′ factors as

C
c−→ A

(
f
−g
)

−−−−→ B ⊕A′ as desired. Next, we compute

Ker(f) = A×B 0 = (A′ ×B′ B)×B 0 ∼−→ A′ ×B′ 0 = Ker(f ′).

We finally prove that ι : Coker(f) ↪→ Coker(f ′) is a monomorphism. We will freely use part (ii).
Let h : C → Coker(f) be a map such that ι ◦ h = 0. We need to show h = 0. Consider now the
pullback square

C ′ C

B Coker(f).

h′

π′

y
h

π

Note that, since π is an epimorphism, the square is a pushout by (ii) and hence also π′ is an
epimorphism. It therefore suffices to prove hπ′ = 0. As ιhπ′ = 0, we deduce that g′h′ : C ′ → B′

factors as C ′ h
′

−→ Im(f ′)
j−→ B′. Consider now the pullback

C ′′ C ′

A′ Im(f ′).

h′′

π′′

h
′

f
′

As f
′
is an epimorphism, we conclude from (ii) that the square is also a pushout and hence π′′ is

an epimorphism. It therefore suffices to prove hπ′π′′ = 0. We have constructed a commutative
diagram with solid arrows

C ′′ C ′

A B

A′ Im(f ′) B′.

h′′

π′′

k
h′

f

g
y

g′

f
′ j

h
′

Since the square (3.1) is cartesian, there exists a unique map k : C ′′ → A such that gk = h′′ and
fk = h′π′′. We now compute

hπ′π′′ = πh′π′′ = πfk = 0.

It follows that ι : Coker(f)→ Coker(f ′) is a monomorphism.

Definition 3.11. Let F : A → B be an additive functor between abelian categories.

(i) F is called left exact if it preserves kernels or, equivalently, if for every exact sequence

0→ A
f−→ B

g−→ C in A the induced sequence 0→ F (A)
F (f)−−−→ F (B)

F (g)−−−→ F (C) is exact.
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(ii) F is called right exact if it preserves cokernels or, equivalently, if for every exact sequence

A
f−→ B

g−→ C → 0 in A the induced sequence F (A)
F (f)−−−→ F (B)

F (g)−−−→ F (C)→ 0 is exact.

(iii) F is called exact if it is left exact and right exact.

Proposition 3.12. Let F : A → B be an additive functor between abelian categories.

(i) F is left exact if and only if for all short exact sequences 0→ A→ B → C → 0 the induced
sequence 0→ F (A)→ F (B)→ F (C) in B is exact.

(ii) F is right exact if and only if for all short exact sequences 0→ A→ B → C → 0 the induced
sequence F (A)→ F (B)→ F (C)→ 0 in B is exact.

(iii) F is exact if and only if for every exact sequence A f−→ B
g−→ C in A the induced sequence

F (A)
F (f)−−−→ F (B)

F (g)−−−→ F (C) in B is exact.

Proof. We prove (i). The “only if”-direction is trivial. Conversely, assume that F preserves kernels
of epimorphisms and in particular monomorphisms. Let now 0 → K

i−→ A
f−→ B be an exact

sequence. We have to show that the induced sequence 0→ F (K)
F (i)−−−→ F (A)

F (f)−−−→ F (B) is exact.

By Theorem 3.4(2) we may factor f as a composite A f−→ I
j−→ B, where f is an epimorphism and j

is a monomorphism. By left exactness, we obtain a commutative diagram

0 F (K) F (A) F (I)

0 F (K) F (A) F (B),

F (i) F (f)

F (j)

F (i) F (f)

where the top row is exact and F (j) is a monomorphism. In other words, we have F (K) = Ker(F (f)).
It remains to show that Ker(F (f)) ↪→ F (A) is also a kernel for F (f). Let g : X → F (A) be a map
such that F (f) ◦ g = 0. Then F (j) ◦ F (f) ◦ g = F (f) ◦ g = 0. Since F (j) is a monomorphism, we
deduce F (f) ◦ g = 0. Hence, g factors uniquely through Ker(F (f)), which shows that Ker(F (f)) =
Ker(F (f)).

Statement (ii) is dual to (i).
We now prove (iii). The “only if”-direction is obvious. Conversely, suppose that F is exact and

let A f−→ B
g−→ C be an exact sequence. Split it into an exact sequence 0 → Ker(g) → B

g−→ C
and an epimorphism A →→ Ker(g). Since F is exact, we obtain by (i) an exact sequence 0 →
F (Ker(g)) → F (B)

F (g)−−−→ F (C) and by (ii) an epimorphism F (A) →→ F (Ker(g)). But this means
that F (A)→ F (B)→ F (C) is exact.

Remark 3.13. Proposition 3.12(iii) shows that F : A → B is exact if and only if for every acyclic
complex X• in A also the complex F (X•) is acyclic.

Exercise 3.14. Let A be an abelian category and A• a complex. Let F : A → B be an additive
functor.

(i) Suppose that F is left exact. Construct a canonical map H0(F (A•))→ F (H0(A•)).

(ii) Suppose that F is right exact. Construct a canonical map F (H0(A•))→ H0(F (A•)).
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(iii) Suppose that F is exact. Show that the map in (i) is an isomorphism with inverse given by
the map in (ii).

Example 3.15. (a) Every equivalence between abelian categories is exact.

(b) Let A be an abelian category. For every A ∈ A the functors HomA(A,−) : A → Ab and
HomA(−, A) : Aop → Ab are left exact (but generally not right exact).

(c) Let R be a commutative ring. Then for every M ∈ Mod(R), the tensor product functor
−⊗RM : Mod(R)→ Mod(R) is right exact (but generally not left exact).

(d) Let F : A � B : U be an adjunction between abelian categories. Then F is right exact and
U is left exact. Indeed, as a left adjoint F preserves all colimits (which exist in A), and in
particular biproducts, the zero object, and cokernels. Hence, F is additive and right exact by
Proposition 3.12(ii). The argument for U is similar.

(e) Let X be a topological space. The global sections functor Γ(X,−) : Shv(X,Ab)→ Ab is left
exact but generally not exact. In contrast, the functor Γ(X,−) : PSh(X,Ab)→ Ab is always
exact.

(f) Let k be a field and G a finite group. Denote Repk(G) the category of G-representations
on k-vector spaces. The functor Mod(k) → Repk(G), which views a k-vector space as a G-
representation with the trivial G-action, admits a left adjoint and a right adjoint. The right
adjoint is given by the functor of G-invariants:

Repk(G) −→ Mod(k),

V 7−→ V G := {v ∈ V | gv = v for all g ∈ G} .

It is therefore left exact; it is exact if and only if the characteristic of k does not divide |G|.

The left adjoint is given by the functor of G-coinvariants:

Repk(G) −→ Mod(k),

V 7−→ VG := V/ spank {v − gv | v ∈ V, g ∈ G} .

It is therefore right exact; it is exact if only if the characteristic of k does not divide |G|.

Definition 3.16. Let A be an abelian category.

(a) An object I ∈ A is called injective if the following equivalent conditions are satisfied:

(i) The functor HomA(−, I) : Aop → Ab is exact.
(ii) For every monomorphism u : A ↪→ B and every map f : A → I there exists a map

g : B → I such that f = g ◦ u:
I

A B.

f

u

∃g

(iii) Every monomorphism u : I ↪→ B splits, i.e., there exists g : B → I with g ◦ u = idI .
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Proof of the equivalences: The equivalence “(i)⇔(ii)” is clear since HomA(−, I) is always left
exact, and “(ii)⇒(iii)” is trivial. For “(iii)⇒(ii)”, let u : A ↪→ B be a monomorphism and
f : A→ I a map. Consider the pushout diagram

I I tA B

A B.

u′

f
x

u

f ′

By the addendum to Proposition 3.10(ii), the map u′ is monic. Hence there exists a splitting
p : I tA B → I with p ◦ u′ = idI . Then p ◦ f ′ : B → I satisfies pf ′u = pu′f = f as desired.

(b) An object P ∈ A is called projective if the following equivalent conditions are satisfied:

(i) The functor HomA(P,−) : A → Ab is exact.
(ii) For every epimorphism p : A→→ B and every map f : P → B there exists a map g : P → A

such that f = p ◦ g:
P

A B.

f
∃g

p

(iii) Every epimorphism p : A→→ P splits, i.e., there exists g : P → A such that p ◦ g = idP .

The following lemma is sometimes useful.

Lemma 3.17. Let F : A� B :G be an adjunction of abelian categories.

(i) If F is (left) exact, then G preserves injective objects. The converse holds if B has enough
injectives.

(ii) If G is (right) exact, then F preserves projective objects. The converse holds if A has enough
projectives.

Proof. Let us only prove (i), because (ii) is dual. Let I ∈ B be injective. The adjunction then gives
a natural isomorphism

HomA(−, G(I)) ∼= HomB(−, I) ◦ F op

of functors Aop → Ab. Since both functors on the right are exact, so is the composition, and hence
G(I) is injective.

For the converse, suppose that B has enough injectives and G preserves injectives. Let u : A ↪→ A′

be a monomorphism in A. We need to show that F (u) is a monomorphism. Choose a monomorphism
f : F (A) ↪→ I. Then we have a commutative diagram

HomB(F (A′), I) HomB(F (A), I)

HomA(A′, G(I)) HomA(A,G(I)),

F (u)∗

∼ ∼

u∗
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where the bottom map is an epimorphism because G(I) is injective. It follows that the top map is an
epimorphism. Hence, there exists g : F (A′)→ I such that g ◦ F (u) = f . As f is a monomorphism,
it follows that F (u) is a monomorphism as well.

Lemma 3.18. Let A be an abelian category.

(i) Let (Ij)j∈J be a family of objects such that the product I =
∏
j∈J Ij exists. Then I is injective

if and only if, for all j ∈ J , the object Ij is injective.

(ii) Let (Pj)j∈J be a family of objects such that the direct sum P =
⊕

j∈J Pj exists. Then P is
projective if and only if, for all j ∈ J , the object Pj is injective.

Proof. We only prove (i), because (ii) is completely dual. We have an isomorphism HomA(−, I) ∼=∏
j∈J HomA(−, Ij) of functors Aop → Ab. As the formation of infinite products in Ab is exact, we

conclude that, if each Ij is injective, then so is I. Conversely, if I is injective, then the exactness of∏
j∈J HomA(−, Ij) implies that each HomA(−, Ij) is exact. Hence each Ij is injective.



Chapter 2

Triangulated Categories

§4. The axioms of a triangulated category

We begin by stating the definition of triangulated categories and drawing some consequences of the
axioms.

Definition 4.1. A category with translation is a pair (C, T ) consisting of a category C and a self-
equivalence T : C ∼−→ C, called a translation functor . We will often write C instead of (C, T ) when
no confusion arises.

A triangle in (C, T ) is a sequence

X
u−→ Y

v−→ Z
w−→ T (X)

in C. A triangle is sometimes denoted by (X,Y, Z, u, v, w) or simply by (u, v, w).
A morphism of triangles (x, y, z) : (X,Y, Z, u, v, w) → (X ′, Y ′, Z ′, u′, v′, w′) consists of three

morphisms x : X → X ′, y : Y → Y ′, z : Z → Z ′ in C such that the diagram

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

x

u

y

v

z

w

T (x)

u′ v′ w′

is commutative.

Definition 4.2. A triangulated category consists is a triple (C, T,DT ), where (C, T ) is an additive
category with translation and DT is a class of triangles in (C, T ), which we call distinguished
triangles, subject to the following conditions:

(T1) (Verdier’s axiom TR1)

(a) DT is closed under isomorphisms of triangles.

(b) The triangle X idX−−→ X → 0→ T (X) is distinguished.
(c) Every morphism u : X → Y in C sits in a distinguished triangle X u−→ Y → Z → T (X).

19
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(T2) (Verdier’s axiom TR2: first half)

IfX u−→ Y
v−→ Z

w−→ T (X) is a distinguished triangle, then so is Y v−→ Z
w−→ T (X)

−T (u)−−−−→ T (Y ).1

(T3) (Verdier’s axiom TR4)

Let f : X → Y and g : Y → Z be morphisms in C, put h := g ◦ f : X → Y , and suppose we
have distinguished triangles

X
f−→ Y

f ′−→ Y/X
f ′′−−→ T (X),

Y
g−→ Z

g′−→ Z/Y
g′′−→ T (Y ),

X
h−→ Z

h′−→ Z/X
h′′−−→ T (X).

Then there exist morphisms u : Y/X → Z/X and v : Z/X → Z/Y in C such that

Y/X
u−→ Z/X

v−→ Z/Y
T (f ′)g′′−−−−−→ T (Y/X)

is a distinguished triangle and such that the following “braid diagram” commutes:

Y/X T (X)

Y Z/X T (Y )

X Z Z/Y T (Y/X).

f ′′

u T (f)f ′

g

h′′

v T (f ′)f

h

h′

g′

g′′

T (f ′)g′′

We will always denote a triangulated category by C or (C, T ) and leave the class DT of distinguished
triangles implicit (although they are additional data!).

Remark 4.3. (a) The axiom (T3) is usually referred to as the octahedral axiom, because the

1For the theory of triangulated categories, it would probably be equally good to replace −T (u) with T (u). But
then there would probably not be many interesting triangulated categories: The sign is necessary to ensure that the
homotopy category K(A) is triangulated (Theorem 4.12).
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displayed diagram can be arranged in the form of an octahedron:

Z/X

Y/X Z/Y

X Z

Y

vu

f ′

f ′′

T (f ′)g′′

g′′

h

h′′

f

g′

h′

g

Note that the formulation in [Har66] is insufficient as it fails to require that the squares in
the octahedron commute.

(b) The original axioms of Verdier [Ver96, Ch. II, Définition 1.1.1] are actually redundant as has
been observed by May [May05], and we will thus follow May’s approach and deduce Verdier’s
axiom TR3 from the other ones.

(c) If (u, v, w) is a distinguished triangle, then so are (u,−v,−w), (−u, v,−w) and (−u,−v, w)
by (T1), because they are isomorphic to (u, v, w). For example, we have an isomorphism

X Y W T (X)

X Y W T (X).

u

idX

v

idY

w

−idW T (idX)

u −v −w

Before we can give an example of a triangulated category we need to develop a little bit of the
theory first. Since our definition of triangulated category does not involve Verdier’s axiom TR3 and
only half of TR2, we first show that these are actually consequences of the axioms (T1)–(T3).

Proposition 4.4 (Verdier’s axiom TR3). Let (C, T ) be a triangulated category. Consider a diagram
with solid arrows

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′),

x

u

y

v w

z T (x)

u′ v′ w′

where the left square commutes and the rows are distinguished triangles. Then there exists z : Z → Z ′

in C such that the whole diagram commutes, that is, z ◦ v = v′ ◦ y and T (x) ◦ w = w′ ◦ z.

Note that the morphism z : Z → Z ′ in the proposition need not be unique; sufficent conditions
for uniqueness will be provided in Lemma 5.1.
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Proof. By (T1) we may embed x, y and y ◦ u = u′ ◦ x in distinguished triangles

X
x−→ X ′

x′−→ X ′′
x′′−−→ T (X),

Y
y−→ Y ′

y′−→ Y ′′
y′′−−→ T (Y ),

X
yu−→ Y ′

p−→W
q−→ T (X).

We apply (T3) to the pairs of morphisms (y, u) and (u′, x), respectively. We thus obtain new
distinguished triangles

Z
s−→W

t−→ Y ′′
T (v)y′′−−−−→ T (Z),

X ′′
s′−→W

t′−→ Z ′
T (x′)w′−−−−−→ T (X ′′)

such that the following diagrams commute:

Z T (X)

Y W T (Y )

X Y ′ Y ′′ T (Z)

w

s T (u)v

y

q

t T (v)u

yu

p

y′

y′′

T (v)y′′

and

X ′′ T (X)

X ′ W T (X ′)

X Y ′ Z ′ T (X ′′).

x′′

s′ T (x)x′

u′

q

t′ T (x′)x

u′x

p

v′

w′

T (x′)w′

We define z := t′ ◦ s : Z → Z ′ and compute

zv = t′sv = t′py = v′y,

w′z = w′t′s = T (x)qs = T (x)w,

which proves the assertion.
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Definition 4.5. Let (C, T ) be a triangulated category and A an abelian category. An additive
functor H : C → A is called cohomological if every distinguished triangle X u−→ Y

v−→ Z
w−→ T (X) in

C induces a long exact sequence

· · · → H(T i(X))
T i(u)−−−→ H(T i(Y ))

T i(v)−−−→ H(T i(Z))
T i(w)−−−−→ H(T i+1(X)) −→ · · ·

Example 4.6. Let A be an abelian category. Then the functor H0 : K(A) → A is cohomological.
Indeed, let f : X → Y be a morphism of complexes and consider the associated triangle X f−→ Y

iY−→
Mc(f)

pX−−→ X[1]. We have to show that for all i ∈ Z the sequence

· · · → H0(X[i])→ H0(Y [i])→ H0(Mc(f)[i])→ H0(X[i+ 1])→ · · ·(4.1)

is exact. Note that we have a short exact sequence 0→ Y → Mc(f)→ X[1]→ 0 in C(A). Hence,
we obtain a long exact sequence in cohomology

· · · → Hi(Y )→ Hi(Mc(f))→ Hi(X[1])
∂i−→ Hi+1(Y )→ · · · .

We claim that this sequence is the same as (4.1), which then proves the claim. We clearly have
Hi(C[j]) = Hi+j(C) for all i, j ∈ Z and all C ∈ K(A). It remains to show that ∂i = Hi+1(f) as maps
Hi+1(X) = Hi(X[1])→ Hi+1(Y ). Recall the definition of ∂i: We have a commutative diagram

· · · Hi(Y ) Hi(Mc(f)) Hi(X[1])

Y i/ Im(di−1
Y ) (Xi+1 ⊕ Y i)/ Im(di−1

Mc(f)) Xi+1/ Im(diX) 0

0 Ker(di+1
Y ) Ker(di+1

Mc(f)) Ker(di+2
X )

Hi+1(Y ) Hi+1(Mc(f)) Hi+1(X[1]) · · ·

∂idiY diMc(f)
di+1
X

Consider x ∈ Ker(di+1
X ) with image x ∈ Hi+1(X). We may lift x to (x, 0) ∈ Mc(f)i, and then ∂i(x)

is the image of diMc(f)(x, 0) = (0, f i+1(x)) in Hi+1(Y ). This shows ∂i = Hi+1(f).

Proposition 4.7. Let (C, T ) be a triangulated category.

(i) The composition of any two consecutive morphisms in a distinguished triangle is zero.
(ii) For each C ∈ C the functors HomC(C,−) : C → Ab and HomC(−, C) : C → Abop are cohomo-

logical.
(iii) Consider a morphism of triangles

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′).

x y z T (x)

If any two of x, y, z are isomorphisms, then so is the third.
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Proof. We first prove (i), so let X u−→ Y
v−→ Z

w−→ T (X) be a distinguished triangle in C. By (T2)
also the triangles (v, w,−T (u)) and (w,−T (u),−T (v)) are distinguished. It therefore suffices to
show vu = 0. To this end, we apply Proposition 4.4 to the distinguished triangles (v, w,−T (u)) and
(idZ , 0, 0) (which is distinguished by (T1)) and obtain a commutative diagram

Y Z T (X) T (Y )

Z Z 0 T (Z).

v

v w

idZ

−T (u)

0 T (v)

idZ

We deduce T (vu) = −T (v) ◦ (−T (u)) = 0. As T is an equivalence, this shows vu = 0.
We next prove (ii). We only show that HomC(C,−) is cohomological, because the argument for

HomC(−, C) is completely analogous. Let (u, v, w) be a distinguished triangle as above. It suffices
to show that the sequence

HomC(C,X)
u∗−→ HomC(C, Y )

v∗−→ HomC(C,Z)

is exact, because exactness of the long sequence at every other place follows by repeated applications
of (T2) and the fact that T is an equivalence. By (i) we know v∗ ◦ u∗ = 0, which shows Im(u∗) ⊆
Ker(v∗). For the reverse inclusion, let f : C → Y be a morphism in C such that v ◦ f = 0. We need
to find g : C → X such that f = u ◦ g. By (T1) the triangle (idC , 0, 0) is distinguished. Hence, by
(T2) we obtain distinguished triangles (0, 0,−T (idC)) and (v, w,−T (u)) and then Proposition 4.4
provides a commutative diagram

C 0 T (C) T (C)

Y Z T (X) T (Y ).

f

−T (idC)

g′ T (f)

v w −T (u)

For the unique map g : C → X with T (g) = g′, we obtain

u ◦ g = −T−1
(
−T (u) ◦ g′

)
= −T−1

(
T (f) ◦ (−T (idC))

)
= f,

which shows Ker(v∗) ⊆ Im(u∗) as desired.
Finally, we prove (iii). Consider the commutative diagram

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′),

x

u

y

v

z

w

T (x)

u′ v′ w′

where the rows are distinguished triangles. We only show that if x and y are isomorphisms, then so
is z; the other cases are similar. By (ii) the functor HomC(C,−) is cohomological for all C ∈ C. We
thus obtain a commutative diagram

Hom(C,X) Hom(C, Y ) Hom(C,Z) Hom(C, T (X)) Hom(C, T (Y ))

Hom(C,X ′) Hom(C, Y ′) Hom(C,C) Hom(C, T (X ′)) Hom(C, T (Y ′))

x∗ y∗ z∗ T (x)∗ T (y)∗
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with exact rows and where all vertical arrows (except z∗) are known to be isomorphisms. By the
five lemma, it follows that z∗ is an isomorphism. By the Yoneda lemma, we deduce that z is an
isomorphism.

Remark. Note that the proof of Proposition 4.7 depends only on the axioms (T1), (T2) and
Proposition 4.4, but not on the octahedral axiom.
Exercise 4.8. Let A be an additive category. Show that a morphism f : X → Y of complexes is a
homotopy equivalence if and only if Mc(f) is contractible.
Exercise 4.9. Let (C, T,DT 1) and (C, T,DT 2) be two triangulated structures on a category with
translation (C, T ) such that DT 1 is contained in DT 2. Show that DT 1 = DT 2.

Proposition 4.10 (Verdier’s axiom TR2: second half). Let (C, T ) be a triangulated category and
X

u−→ Y
v−→ Z

w−→ T (X) a triangle. Then (u, v, w) is distinguished if and only if the shifted triangle
(v, w,−T (u)) is distinguished.

Proof. The “only if” direction is (T2). We thus need to prove the converse direction. By (T1)

there exists a distinguished triangle X u−→ Y
v′−→ Z ′

w′−→ T (X). Applying (T2) repeatedly, we find
that the triangles (−T (u),−T (v′),−T (w′)) and (−T (u),−T (v),−T (w)) are distinguished, and by
Proposition 4.4 we obtain a commutative diagram

T (X) T (Y ) T (Z ′) T 2(X)

T (X) T (Y ) T (Z) T 2(X),

−T (u) −T (v′)

f ′

−T (w′)

−T (u) −T (v) −T (w)

where f ′ : T (Z ′) ∼−→ T (Z) is an isomorphism by Proposition 4.7(iii). Since T is an equivalence, there
exists a unique isomorphism f : Z ′ ∼−→ Z such that T (f) = f ′. We obtain a commutative diagram

X Y Z ′ T (X)

X Y Z T (X),

u v′

f

w′

u v w

where the top triangle is distinguished. By (T1) also the bottom triangle is distinguished.

Exercise 4.11. Let C be an additive category, let f : X → Y and g : Y → Z be morphisms in C(C)
such that g ◦ f is homotopic to zero. Show that g factors through Mc(f).

We have finally shown that our definition of “triangulated category” coincides with the classical
definition. We now have everything we need to give a first example of a triangulated category.

Theorem 4.12. Let A be an additive category. Let DT be the class of triangles in (K(A), [1]) which
are isomorphic to a triangle of the form

X
f−→ Y

ι−→ Mc(f)
π−→ X[1],

where ι and π are the canonical maps. Then (K(A), [1],DT ) is a triangulated category.
The categories K+(A), K−(A) and Kb(A) are triangulated subcategories of K(A).
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Proof. The last statement is obvious, so we only need to prove that K(A) is triangulated.
Note that Mc(idX) = 0 in K(A) by Proposition 2.13(i). Hence (T1) is trivially satisfied.
We now prove (T2). Note that the condition in (T2) is invariant under isomorphisms of triangles.

Consider the distinguished triangle X f−→ Y
ι−→ Mc(f)

π−→ X[1], where ι =
(

0
idY

)
and π = (idX , 0).

Note that Mc(ι)i = Y i+1 ⊕ Xi+1 ⊕ Y i with differential d =

(
−dY 0 0

0 −dX 0
idY f dY

)
. We construct an

isomorphism of triangles

(4.2)
Y Mc(f) Mc(ι) Y [1]

Y Mc(f) X[1] Y [1]

ι

id id

j p

g id

ι π −f [1]

in K(A) via

gi =
(
0 id 0

)
: Mc(ι)i = Y i+1 ⊕Xi+1 ⊕ Y i −→ Xi+1

(y, x, y′) 7−→ x

for all i ∈ Z. From the definition it is clear that g is a morphism of complexes and that g ◦ j =
π ◦ idMc(f) already holds in C(A). It remains to prove −f [1]◦g = idY [1] ◦p and that g is a homotopy
equivalence.

We first show that p+ f [1] ◦ g : Mc(ι)→ Y [1] is null homotopic. To this end, we define

si =
(
0 0 id

)
: Mc(ι)i = Y i+1 ⊕Xi+1 ⊕ Y i −→ Y i = Y [1]i−1,

(y, x, y′) 7−→ y′.

Recalling dY [1] = −dY , we then compute

si+1diMc(ι) + di−1
Y [1]s

i =
(
0 0 id

)−d 0 0
0 −d 0
id f d

+ (−d) ◦
(
0 0 id

)
=
(
id f d

)
+
(
0 0 −d

)
=
(
id f 0

)
=
(
id 0 0

)
+ f [1] ◦

(
0 id 0

)
= p+ f [1] ◦ g.

Hence, the diagram (4.2) is commutative in K(A).
It remains to show that g is a homotopy equivalence. Define a map h : X[1]→ Mc(ι) via

hi =

−fid
0

 : X[1]i = Xi+1 −→ Y i+1 ⊕Xi+1 ⊕ Y i = Mc(ι)i,

x 7−→ (−f(x), x, 0)
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for i ∈ Z. Again, keeping in mind that dX[1] = −dX , we compute

hi+1diX[1] − d
i
Mc(ι)h

i =

−fid
0

 ◦ (−d)−

−d 0 0
0 −d 0
id f d

−fid
0


=

fd−d
0

−
 df
−d
−f + f

 = 0.

We deduce that h is a morphism of complexes because f is. Moreover, we have g ◦h = idX[1] already
in C(A). It thus remains to show that idMc(ι) − h ◦ g is null homotopic. To this end, we define

ti =

0 0 id
0 0 0
0 0 0

 : Mc(ι)i = Y i+1 ⊕Xi+1 ⊕ Y i −→ Y i ⊕Xi ⊕ Y i−1 = Mc(ι)i−1,

(y, x, y′) 7−→ (y′, 0, 0).

Now, compute

ti+1diMc(ι) + di−1
Mc(ι)t

i =

0 0 id
0 0 0
0 0 0

−d 0 0
0 −d 0
id f d

+

−d 0 0
0 −d 0
id f d

0 0 id
0 0 0
0 0 0


=

id f d
0 0 0
0 0 0

+

0 0 −d
0 0 0
0 0 id

 =

id 0 0
0 id 0
0 0 id

−
0 −f 0

0 id 0
0 0 0


= idMc(ι) −

−fid
0

(0 id 0
)

= idMc(ι) − h ◦ g.

We deduce that g is a homotopy equivalence with homotopy inverse h. This finishes the verification
of axiom (T2).

Finally, we need to prove the octahedral axiom (T3). We first handle a special case: Consider
distinguished triangles

X
f−→ Y

ιf−→ Mc(f)
πf−−→ X[1],

Y
g−→ Z

ιg−→ Mc(g)
πg−→ Y [1],

X
gf−→ Z

ιgf−−→ Mc(gf)
πgf−−→ X[1]

in K(A). We need to construct a distinguished triangle

Mc(f)
u−→ Mc(gf)

v−→ Mc(g)
ιf [1]πg−−−−→ Mc(f)[1]
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such that the diagram

(4.3)

Mc(f) X[1]

Y Mc(gf) Y [1]

X Z Mc(g) Mc(f)[1]

πf

u f [1]ιf

g

πgf

v ιf [1]f

gf

ιgf

ιg

πg

ιf [1]πg

commutes in K(A).
Step 1: We define morphisms u : Mc(f)→ Mc(gf) and v : Mc(gf)→ Mc(g) via

ui :=

(
id 0
0 g

)
: Mc(f)i = Xi+1 ⊕ Y i −→ Xi+1 ⊕ Zi = Mc(gf)i,

(x, y) 7−→ (x, g(y)),

vi :=

(
f 0
0 id

)
: Mc(gf)i = Xi+1 ⊕ Zi −→ Y i+1 ⊕ Zi = Mc(g)i,

(x, z) 7−→ (f(x), z).

The computations

udMc(f) − dMc(gf)u =

(
id 0
0 g

)(
−d 0
f d

)
−
(
−d 0
gf d

)(
id 0
0 g

)
=

(
−d 0
gf gd

)
−
(
−d 0
gf dg

)
=

(
−d+ d 0
gf − gf gd− dg

)
= 0,

vdMc(gf) − dMc(g)v =

(
f 0
0 id

)(
−d 0
gf d

)
−
(
−d 0
g d

)(
f 0
0 id

)
=

(
−fd 0
gf d

)
−
(
−df 0
gf d

)
=

(
−fd+ df 0
gf − gf d− d

)
= 0

show that u and v are indeed morphisms of complexes.
Step 2: We construct a homotopy equivalence ϕ : Mc(u)→ Mc(g) such that the diagram

(4.4)
Mc(f) Mc(gf) Mc(u) Mc(f)[1]

Mc(f) Mc(gf) Mc(g) Mc(f)[1]

u ιu

ϕ

πu

u v ιf [1]πg

commutes. To this end, we put

ϕi :=

(
0 id f 0
0 0 0 id

)
: Mc(u)i = Xi+2 ⊕ Y i+1 ⊕Xi+1 ⊕ Zi −→ Y i+1 ⊕ Zi = Mc(g)i,

(x, y, x′, z) 7−→ (y + f(x′), z)
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and we claim that the homotopy inverse ψ : Mc(g)→ Mc(u) is given by

ψi :=

(
0 0
id 0
0 0
0 id

)
: Mc(g)i = Y i+1 ⊕ Zi −→ Xi+2 ⊕ Y i+1 ⊕Xi+1 ⊕ Zi = Mc(u)i,

(y, z) 7−→ (0, y, 0, z).

The computations

ϕdMc(u) − dMc(g)ϕ =
(

0 id f 0
0 0 0 id

)( d 0 0 0
−f −d 0 0
id 0 −d 0
0 g gf d

)
−
(
−d 0
g id

)(
0 id f 0
0 0 0 d

)
=
(−f+f −d −fd 0

0 0 0 d

)
−
(

0 −d −df 0
0 g gf d

)
= 0,

ψdMc(g) − dMc(u)ψ =

(
0 0
id 0
0 0
0 id

)(
−d 0
g d

)
−

(
d 0 0 0
−f −d 0 0
id 0 −d 0
0 g gf d

)(
0 0
id 0
0 0
0 id

)
=

( 0 0
−d 0
0 0
g d

)
−
( 0 0
−d 0
0 0
g d

)
= 0

show that ϕ and ψ are indeed morphisms of complexes. Note that we have ϕ ◦ ψ = idMc(g) already
in C(A). We next show that idMc(u) − ψ ◦ ϕ is null homotopic. To this end, we define

ri : Mc(u)i = Xi+2 ⊕ Y i+1 ⊕Xi+1 ⊕ Zi

(
0 0 id 0
0 0 0 0
0 0 0 0
0 0 0 0

)
−−−−−−−→ Xi+1 ⊕ Y i ⊕Xi ⊕ Zi−1 = Mc(u)i−1,

(x, y, x′, z) 7−→ (x′, 0, 0, 0).

Now, we compute

ri+1diMc(u) + dMc(u)r
i

=

(
0 0 id 0
0 0 0 0
0 0 0 0
0 0 0 0

)( d 0 0 0
−f −d 0 0
id 0 −d 0
0 g gf d

)
+

(
d 0 0 0
−f −d 0 0
id 0 −d 0
0 g gf d

)(
0 0 id 0
0 0 0 0
0 0 0 0
0 0 0 0

)
=

(
id 0 −d 0
0 0 0 0
0 0 0 0
0 0 0 0

)
+

(
0 0 d 0
0 0 −f 0
0 0 id 0
0 0 0 0

)
=

(
id 0 0 0
0 0 −f 0
0 0 id 0
0 0 0 0

)
= idMc(u) −

(
0 0 0 0
0 id f 0
0 0 0 0
0 0 0 id

)
= idMc(u) −

(
0 0
id 0
0 0
0 id

)(
0 id f 0
0 0 0 id

)
= idMc(u) − ψ ◦ ϕ,

which shows that ϕ is a homotopy equivalence with homotopy inverse ψ.
Finally, we need to show that the diagram (4.4) commutes. From the definition it is obvious that

the left and middle squares commute (already in C(A)). Moreover, we have ιf [1] ◦ πg = πu ◦ ψ in
C(A), from which we deduce (using that ϕ is the homotopy inverse of ψ) that also the right square
commutes in K(A).
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Step 3: We need to check that the diagram (4.3) commutes, but this is immediate from the
construction, since all squares and triangles commute already in C(A):

πgf ◦ u =
(
id 0

)(id 0
0 g

)
=
(
id 0

)
= πf ,

u ◦ ιf =

(
id 0
0 g

)(
0
id

)
=

(
0
g

)
=

(
0
id

)
◦ g = ιgf ◦ g,

f [1] ◦ πgf = f ◦
(
id 0

)
=
(
f 0

)
=
(
id 0

)(f 0
0 id

)
= πg ◦ v,

v ◦ ιgf =

(
f 0
0 id

)(
0
id

)
=

(
0
id

)
= ιg.

This finishes the verification of (T3) in the special case.

We now handle the general case. Observe first that, if f : X → Y is a morphism of complexes

and X
f−→ Y

f ′−→ Y/X
f ′′−−→ X[1] is any distinguished triangle, then there exists an isomorphism

ϕ : Y/X ∼−→ Mc(f) in K(A) making the diagram

X Y Y/X X[1]

X Y Mc(f) X[1]

f f ′

ϕ∼

f ′′

f ιf πf

commutative. Indeed, by definition the distinguished triangle (f, f ′, f ′′) is isomorphic to a triangle
of the form X ′

f0−→ Y ′ → Mc(f0) → X ′[1], and then Proposition 2.13(iii) provides the map
ϕ : Y/X → Mc(f) making the whole diagram commute. Now Proposition 4.7(iii) shows that ϕ is
an isomorphism.

Let now

X
f−→ Y

f ′−→ Y/X
f ′′−−→ X[1]

Y
g−→ Z

g′−→ Z/Y
g′′−→ Y [1]

X
h−→ Z

h′−→ Z/X
h′′−−→ X[1]

be distinguished triangles in K(A) such that h = g ◦ f in K(A). Up to changing h by a homotopic
map we may assume that h = g ◦ f already in C(A). By the observation above we get the following
isomorphisms of distinguished triangles:

(idX , idY , ϕ) : (f, f ′, f ′′) ∼−→ (f, ιf , πf ),

(idY , idZ , γ) : (g, g′, g′′) ∼−→ (g, ιg, πg),

(idX , idZ , η) : (h, h′, h′′) ∼−→ (h, ιh, πh).

By what we have proved above, we find maps u : Mc(f)→ Mc(h) and v : Mc(h)→ Mc(g) such that

Mc(f)
u−→ Mc(h)

v−→ Mc(g)
ιf [1]◦πg−−−−−→ Mc(f)[1]
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is a distinguished triangle. We obtain an isomorphism of triangles

Y/X Z/X Z/Y Y/X[1]

Mc(f) Mc(h) Mc(g) Mc(f)[1],

ϕ ∼

ũ

η∼

ṽ

γ∼

f ′[1]◦g′′

ϕ[1]∼

u v ιf [1]◦πg

where ũ := η−1uϕ and ṽ := γ−1vη. It remains to check that the diagram

Y/X X[1]

Y Z/X Y [1]

X Z Z/Y Mc(f)[1]

f ′′

ũ f [1]f ′

g

h′′

ṽ f ′[1]f

h

h′

g′

g′′

f ′[1]◦g′′

commutes. To this end, we compute

ũf ′ = η−1uϕf ′ = η−1uιf = η−1ιhg = h′g,

h′′ũ = πhηη
−1uϕ = πhuϕ = πfϕ = f ′′,

g′′ṽ = πgγγ
−1vη = πgvη = f [1] ◦ πhη = f [1] ◦ h′′,

ṽh′ = γ−1vηh′ = γ−1vιh = γ−1ιg = g′.

We conclude that K(A) is a triangulated category.

Lemma 4.13 (3× 3 lemma). Let (C, T ) be a triangulated category. Consider a diagram with solid
arrows

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

X ′′ Y ′′ Z ′′ T (X ′′)

T (X) T (Y ) T (Z) T 2(X),

f

x

g

y

h

z T (x)

x′

f ′

y′

g′

z′

h′

T (x′)

x′′

f ′′

y′′

g′′

z′′

h′′

− T (x′′)

T (f) T (g) T (h)

where the upper left square commutes and the first two rows and columns are distinguished triangles.
Then there exist the dashed arrows such that the third row and column are distinguished triangles
and all squares commute, except for the one marked ‘−’, which anti-commutes.



32 Chapter 2. Triangulated Categories

Proof. By (T1) we may embed y ◦ f = f ′ ◦ x in a distinguished triangle X yf−→ Y ′
p−→ A

q−→ T (X).
We apply (T3) to the two decompositions y ◦ f = f ′ ◦ x and obtain two commutative diagrams

Z T (X)

Y A T (Y )

X Y ′ Y ′′ T (Z)

h

s T (f)g

y

q

t T (g)f

yf

p

y′

y′′

T (g′)y′′

and

X ′′ T (X)

X ′ A T (X ′)

X Y ′ Z ′ T (X ′′),

x′′

u T (x)x′

f ′

q

v T (x′)x

f ′x

p

g′

h′

T (x′)h′

where

Z
s−→ A

t−→ Y ′′
T (g′)y′′−−−−−→ T (Z),

X ′′
u−→ A

v−→ Z ′
T (x′)h′−−−−−→ T (X ′′)

are distinguished triangles. By (T1) we may embed z := vs : Z → Z ′ in a distinguished triangle

Z
z−→ Z ′

z′−→ Z ′′
z′′−→ T (X). Applying (T3) to the decomposition z = vs, we obtain a commutative

diagram

Y ′′ T (Z)

A Z ′′ T (A)

Z Z ′ T (X ′′) T (Y ′′),

T (g)y′′

g′′ T (s)t

v

z′′

h′′ T (t)s

z

z′

T (x′)h′

−T (u)

−T (tu)
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where Y ′′ g
′′

−→ Z ′′
h′′−−→ T (X ′′)

−T (tu)−−−−−→ T (Y ′′) is a distinguished triangle. Putting f ′′ := tu, we obtain
by Proposition 4.10 a distinguished triangle

X ′′
f ′′−−→ Y ′′

g′′−→ Z ′′
h′′−−→ T (X ′′).

This finishes the construction of the diagram, in which the first three rows and columns are distin-
guished triangles. It remains to check the commutativity of the squares:

zg = vsg = vpy = g′y,

h′z = h′vs = T (x)qs = T (x)h,

f ′′x′ = tux′ = tpf ′ = y′f ′,

z′g′ = z′vp = g′′tp = g′′y′,

h′′z′ = T (x′)h′,

y′′f ′′ = y′′tu = T (f)qu = T (f)x′′,

z′′g′′ = T (g)y′′,

T (x′′)h′′ = T (q)T (u)h′′ = −T (qs)z′′ = −T (h)z′′.

§5. Some properties of triangulated categories

Lemma 5.1. Let (C, T ) be a triangulated category. Consider a diagram (with solid arrows)

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

x

f

y

g

z

h

T (x)

f ′ g′ h′

where the left square commutes and the rows are distinguished triangles. Suppose that one of the
following conditions is satisfied: (a) HomC(T (X), Z ′) = 0, or (b) HomC(Z, Y

′) = 0. Then there
exists a unique morphism z : Z → Z ′ making the whole diagram commutative.

Proof. Suppose that HomC(T (X), Z ′) = 0. Let z1, z2 : Z → Z ′ be two morphisms making the
diagram commute, so that g∗(z1) = z1g = g′y = z2g = g∗(z2). By Proposition 4.7(ii) the sequence

0 = HomC(T (X), Z ′)→ HomC(Z,Z
′)

g∗−→ HomC(Y,Z
′).

is exact, from which we deduce z1 = z2. If HomC(Z, Y
′) = 0, then we argue similarly using the

exact sequence 0 = HomC(Z, Y
′)→ HomC(Z,Z

′)
h′∗−→ HomC(Z, T (X ′)) instead.

Proposition 5.2. Let (C, T ) be a triangulated category and consider two distinguished triangles

X
u−→ Y

v−→ Z
w−→ T (X),

X ′
u′−→ Y ′

v′−→ Z ′
w′−→ T (X ′).

Then the triangle X ⊕X ′ u⊕u
′

−−−→ Y ⊕ Y ′ v⊕v
′

−−−→ Z ⊕ Z ′ w⊕w
′

−−−−→ T (X)⊕ T (X ′) is distinguished.
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Proof. By (T1) there exists a distinguished triangle

X ⊕X ′ u⊕u
′

−−−→ Y ⊕ Y ′ f−→ C
g−→ T (X ⊕X ′).

Now, Proposition 4.4 provides two morphisms ζ : Z → C and ζ ′ : Z ′ → C together with morphisms

X Y Z T (X)

X ⊕X ′ Y ⊕ Y ′ C T (X ⊕X ′)

X ′ Y ′ Z ′ T (X ′)

iX

u

iY

v

ζ

w

T (ιX)

u⊕u′ f g

iX′

u′

ιY ′

v′

ζ′

w′

T (ιX′ )

of distinguished triangles. We obtain a commutative diagram

X ⊕X ′ Y ⊕ Y ′ Z ⊕ Z ′ T (X)⊕ T (X ′)

X ⊕X ′ Y ⊕ Y ′ C T (X ⊕X ′).

u⊕u′ v⊕v′

(ζ,ζ′)

w⊕w′

∼

u⊕u′ f g

of triangles. It suffices to show that (ζ, ζ ′) : Z ⊕ Z ′ → C is an isomorphism. Applying HomC(M,−)
for varying M ∈ C, we obtain a commutative diagram

Hom(T (Y ⊕ Y ′),M) Hom(T (X ⊕X′),M) Hom(C,M) Hom(Y ⊕ Y ′,M) Hom(X ⊕X′,M)

Hom(T (Y )⊕ T (Y ′),M) Hom(T (X)⊕ T (X′),M) Hom(Z ⊕ Z′,M) Hom(Y ⊕ Y ′,M) Hom(X ⊕X′,M)

∼ ∼ (ζ,ζ′)∗

of abelian groups with exact rows. By the five lemma, the map (ζ, ζ ′)∗ is an isomorphism. By the
Yoneda lemma, (ζ, ζ ′) is an isomorphism, which finishes the proof.

Proposition 5.3. Let (C, T ) be a triangulated category. Let X u−→ Y
v−→ Z

w−→ T (X) be a distin-
guished triangle. Then:

(i) u is an isomorphism if and only if Z = 0.

(ii) The triangle X iX−−→ X ⊕ Z pZ−−→ Z
0−→ T (X) is distinguished.

(iii) If w = 0, then the triangle (u, v, w) is isomorphic to (iX , pZ , 0). In this case we say that the
triangle (u, v, w) splits.

Proof. Part (i) is exactly as in Exercise 3.2.
Let us prove (ii). The triangle (iX , pZ , 0) is the direct sum of the distinguished triangles

X
id−→ X → 0 → T (X) and 0 → Z

id−→ Z → 0 (cf. (T1), (T2)). Hence, Proposition 5.2 shows that
(iX , pZ , 0) is distinguished.
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We prove (iii), so assume w = 0. Then Proposition 4.4 (applied to appropriately shifted triangles)
yields a morphism

X X ⊕ Z Z T (X)

X Y Z T (X)

iX

f

pZ 0

u v 0

of distinguished trangles, and Proposition 4.7(iii) shows that f is an isomorphism.

Corollary 5.4. Let (C, T ) be a triangulated category. Then all monomorphisms and epimorphisms
split. In other words, C is semi-simple.

Proof. Let u : X → Y be a monomorphism and let X u−→ Y
v−→ Z

w−→ T (X) be a distinguished
triangle provided by (T1). By (T2) the triangle (v, w,−T (u)) is distinguished. Since T is an
equivalence of categories, T (u) is a monomorphism. Since also −T (u) ◦w = 0 by Proposition 4.7(i),
we conclude that w = 0. Now Proposition 5.3(iii) shows that the triangle (u, v, w) splits, which
proves the assertion. The argument for epimorphisms is analogous.

Example 5.5. Let A be an additive category such that K(A) is abelian. Then A and K(A) are
semi-simple.

In particular, K(Ab) is not abelian.

Proof. Following the strategy in [tu], we proceed in several steps.
Step 1: Let C be an abelian category. Then C is semi-simple if and only if every morphism

f : A→ B admits a pseudo-inverse, i.e., a map g : B → A such that fgf = f and gfg = g.
Suppose that every morphism admits a pseudo-inverse. Let u : A ↪→ B be a monomorphism

with pseudo-inverse v : B → A. Since u is a monomorphism, the equality uvu = u implies vu = idA,
hence C is semi-simple. Conversely, suppose that C is semi-simple. Let f : A→ B be a morphism.
We factor f = i ◦ p, where p : A→→ I is an epimorphism and i : I ↪→ B is a monomorphism. Since
C is semi-simple, there exist splittings s : I ↪→ A and π : B →→ I with ps = idI = πi. Putting
g := s ◦ π : B → A, we compute gfg = sπipsπ = sπ = g and fgf = ipsπip = ip = f , as desired.

Step 2: Let C be an abelian semi-simple category and A ⊆ C a full subcategory. Then A is
semi-simple.

By Step 1 it suffices to check that every morphism in A admits a pseudo-inverse, which is clear
since a pseudo-inverse exists in C and A ⊆ C is full.

Step 3: Proof of the statement. If K(A) is abelian, then Corollary 5.4 shows that K(A) is
semi-simple. Now A ⊆ K(A) is a full subcategory, and hence semi-simple by Step 2.

§6. Exact functors and triangulated subcategories

Definition 6.1. Let (C, T ), (D, S) be triangulated categories. An exact functor (C, T ) → (D, S)
consists of a pair (F, ξ), where F : C → D is a functor and ξ : FT ∼−→ SF is a natural isomorphism,
such that for every distinguished triangle X u−→ Y

v−→ Z
w−→ T (X) in C the triangle

F (X)
F (u)−−−→ F (Y )

F (v)−−−→ F (Z)
ξXF (w)−−−−−→ SF (X)
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in D is distinguished. We will often denote an exact functor by F instead of (F, ξ).
A natural transformation µ : (F, ξ)→ (G, ζ) between exact functors is called exact if Sµ ◦ ξ =

ζ ◦ µT as natural transformations FT → SG. We denote by

Fun4(C,D)

the category of exact functors and exact natural transformations (see Exercise 6.2).

Exercise 6.2. Let H : (B, U)→ (C, T ), F, F ′, F ′′ : (C, T )→ (D, S) and G : (D, S)→ (E , R) be exact
functors between triangulated categories.

(a) Show that the composition G ◦ F is an exact functor.

(b) Let µ : F → F ′ and µ′ : F ′ → F ′′ be exact natural transformations. Show that the following
natural transformations are exact: (i) µH : F ◦ H → F ′ ◦ H; (ii) Gµ : G ◦ F → G ◦ F ′;
(iii) µ′ ◦ µ : F → F ′′.

Lemma 6.3. Let F : (C, T ) → (D, S) be an exact functor of triangulated categories. Then F is
additive.

Proof. We first show that F (0) = 0. Let X ∈ C be arbitrary (e.g., X = 0) and consider the
distinguished triangle X id−→ X → 0 → T (X) in C. Since F is exact, we obtain a distinguished

triangle F (X)
F (idX)−−−−→ F (X) −→ F (0) −→ SF (X). As F (idX) = idF (X) is an isomorphism,

Proposition 5.3(i) shows that F (0) = 0.
We next show F (X ⊕ Y ) ∼−→ F (X)⊕ F (Y ) for all fixed X,Y ∈ C (via the obvious maps). Note

that F preserves zero morphisms, because F (0) = 0. Proposition 5.3(ii) provides distinguished

triangles X iX−−→ X ⊕ Y pY−−→ Y
0−→ T (X) and F (X)

iF (X)−−−→ F (X) ⊕ F (Y )
pF (Y )−−−−→ F (Y )

0−→ SF (X).
Consider now the following morphism of distinguished triangles:

F (X) F (X ⊕ Y ) F (Y ) SF (X)

F (X) F (X)⊕ F (Y ) F (Y ) SF (X),

F (iX) F (pY ) 0

iF (X)
pF (Y ) 0

where the top triangle is distinguished because F is exact. By Proposition 4.7(iii) we conclude that
F (X ⊕ Y ) ∼−→ F (X)→ F (Y ) is an isomorphism as desired.

Example 6.4. Let F : A → B be an additive functor between additive categories. Then the induced
functor K(F ) : K(A)→ K(B) (given by applying F termwise to a complex) is exact.

Proof. Since F is additive, we have an induced functor C(F ) : C(A) → C(B) given by applying F
termwise to a complex.2 If s is a homotopy between morphisms f , g, then clearly F (s) is a homotopy
between F (f) and F (g), so that C(F ) descends to a functor K(F ) on the homotopy categories. It
is trivial to check K(F )(X[1]) = K(F )(X)[1] and K(F )(Mc(f)) = Mc(K(F )(f)) for all complexes X
and all morphisms f . Hence K(F ) preserves triangles and is thus exact.

TODO: The following result is optional.
2We need additivity to deduce F (di) ◦ F (di−1) = F (di ◦ di−1) = F (0) = 0.
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Proposition 6.5. Let (F, ξ) : (C, T )→ (D, S) be an exact functor of triangulated categories. If F
admits a (right or left) adjoint G : D → C, then G can be promoted to an exact functor such that
the unit and counit are exact.

Proof. Suppose that F admits a right adjoint G : D → C. The case of a left adjoint is dual. We
proceed in several steps. The construction of a natural isomorphism ζ : GS ∼−→ TG such that (G, ζ)
is exact will be given in Step 2. We denote the unit by η : idC → GF and the counit by ε : FG→ idD.

Step 1: Suppose that α : F1
∼−→ F2 is a natural isomorphism of functors C → D and that Fi

admits a right adjoint Gi with unit ηi : idC → GiFi and counit εi : FiGi → idD (i = 1, 2). Then
passing to the right adjoints yields an isomorphism αr : G2

∼−→ G1 given explicitly by the composite

G2
η1G2−−−→ G1F1G2

G1αG2−−−−→ G1F2G2
G1ε2−−−→ G1.

Indeed, for all X ∈ C and Y ∈ D we have a commutative diagram

HomD(F2(X), Y ) HomC(X,G2(Y )) ε2Y ◦ F2(f) f

HomD(F1(X), Y ) HomC(X,G1(Y )) ε2Y ◦ F2(f) ◦ αX G1(ε2Y ◦ F2(f) ◦ αX) ◦ η1X ,

α∗X ∼

∼

αrY ∗

∼

and the fact that G1ε2Y ◦G1F2(f) ◦G1(αX) ◦ η1X = αrY ◦ f follows from the commutativity of the
diagram

X G1F1(X) G1F2(X)

G2(Y ) G1F1G2(Y ) G1F2G2(Y ) G1(Y ).

f

η1X

G1F1(f)

G1αX

G1F2(f)

η1G2(Y )

αrY

G1αG2(Y ) G1ε2Y

This shows that the dashed vertical arrow indeed makes the diagram commutative and is an
isomorphism. From the Yoneda lemma we deduce that αrY is an isomorphism.

Step 2: We apply Step 1 to the natural isomorphism α = ξ : FT ∼−→ SF . Note that the unit

for the adjunction FT a T−1G is given by the composite idC
∼−→ T−1T

T−1ηT−−−−→ T−1GFT , and the
counit is given by the composite FTT−1G ∼−→ FG

ε−→ idD. Similarly for the unit and counit of
SF a GS−1. Hence, letting ζ ′ denote the composite

ζ ′ : TG
ηTG−−−→ GFTG

GξG−−−→ GSFG
GSε−−−→ GS,

we obtain from Step 1 that the composite GS−1 ∼−→ T−1TGS−1 T−1ζ′S−1

−−−−−−→ T−1GSS−1 ∼−→ T−1G
is an isomorphism. But since T−1, S−1 are equivalences of categories, we deduce that ζ ′ is an
isomorphism. We now put ζ := ζ ′−1 : GS ∼−→ TG.
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Step 3: The natural transformations η : idC → GF and ε : FG → idD are exact. Indeed, the
commutative diagram

T GFT GSF

TGF GFTGF GSFGF GSF

ηT

Tη GFTη

Gξ

GSFη

ηTGF GξGF GSεF

ζF

shows that the diagram
T T

GFT GSF TGF

ηT Tη

Gξ ζF

commutes. Hence η is exact. Similarly, the commutative diagram

FTG FGFTG FGSFG FGS

FTG SFG S

FηTG

εFTG

FGξG

εSFG

FGSε

εS

Fζ

ξG Sε

shows that the diagram

FGS FTG SGF

S S

Fζ

εS

ξG

Sε

commutes. Hence ε is exact.

Step 4: The functor (G, ζ) : (D, S)→ (C, T ) is exact. Indeed, let X u−→ Y
v−→ Z

w−→ S(X) be a

distinguished triangle in D. By (T1) there exists a distinguished triangle G(X)
G(u)−−−→ G(Y )

a−→ A
b−→

TG(X). We need to find an isomorphism f : A ∼−→ G(Z) making the diagram

(6.1)
G(X) G(Y ) A TG(X)

G(X) G(Y ) G(Z) TG(X)

G(u) a

f

b

G(u) G(v) ζZ◦G(w)

commute. Since F is exact, we obtain from Proposition 4.4 a morphism g : F (A) → Z such that
the diagram of distinguished triangles

FG(X) FG(Y ) F (A) SFG(X)

X Y Z S(X)

εX

FG(u)

εX

F (a)

g

ξG(X)F (b)

SεX

u v w
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commutes. We define f := G(g) ◦ ηA : A → G(Z) to be the morphism which is adjoint to g. We
then compute

f ◦ a = G(g) ◦ ηA ◦ a = G(g) ◦GF (a) ◦ ηG(Y ) = G(g ◦ F (a)) ◦ ηG(Y )

= G(v ◦ εX) ◦ ηG(Y ) = G(v) ◦G(εY ) ◦ ηG(Y ) = G(v),

using naturality of η and the triangle identity Gε ◦ ηG = idG, and

ζZ ◦G(w) ◦ f = ζZ ◦G(w) ◦G(g) ◦ ηA = ζZ ◦G(w ◦ g) ◦ ηA
= ζZ ◦G(SεX ◦ ξG(X) ◦ F (b)) ◦ ηA = ζZ ◦GS(εX) ◦G(ξG(X)) ◦GF (b) ◦ ηA
= TG(εX) ◦ ζFG(Z) ◦G(ξG(X)) ◦ ηTG(X) ◦ b = TG(εX) ◦ T (ηG(X)) ◦ b = b,

using naturality of ζ and that η is exact (for the penultimate step) by Step 3. Hence the diagram
(6.1) commutes.

It remains to show that f : A ∼−→ G(Z) is an isomorphism. For anyW ∈ C we have a commutative
diagram

Hom(W,G(X)) Hom(W,G(Y )) Hom(W,A) Hom(W,TG(X)) Hom(W,TG(Y ))

Hom(W,G(X)) Hom(W,G(Y )) Hom(W,G(Z)) Hom(W,TG(X)) Hom(W,TG(Y ))

Hom(F (W ), X) Hom(F (W ), Y ) Hom(F (W ), Z) Hom(F (W ), S(X)) Hom(F (W ), S(Y ))

f∗

∼ ∼ ∼ ∼ ∼

where the first and last row are exact by Proposition 4.7(i). We deduce that also the second row
is exact, and then the five lemma shows that f∗ is an isomorphism. From the Yoneda lemma we
conclude that f is an isomorphism as desired. This finishes the proof that (G, ζ) is exact.

Definition 6.6. Let (C, T ) be a triangulated category. A full subcategory C′ ⊆ C is called triangu-
lated if the following properties are satisfied:

(a) For X ∈ C′ if and only if T (X) ∈ C′.
(b) If X → Y → Z → T (X) is a distinguished triangle in C such that X,Y ∈ C′, then Z ∈ C′.

Moreover, the subcategory C′ is called thick if it is closed under direct summands, i.e., ifX = X1⊕X1

lies in C′, then so do X1 and X2. A thick closure of C′ is the smallest thick triangulated subcategory
C′⊕ ⊆ C containing C′.

Remark 6.7. Let C′ be a triangulated subcategory of (C, T ). The following observations are
immediate:

(i) C′ ⊆ C is strictly full : If u : X ∼−→ Y is an isomorphism with X ∈ C′, then Y ∈ C′. (Indeed,
0 ∈ C′ by (T1)(b) and 0→ X

u−→ Y → T (0) is distinguished by (T1) and Proposition 4.10.)

(ii) The functor T : C′ ∼−→ C′ is an equivalence of categories. (For essential surjectivity, use (i) and
the fact that T (T−1(X)) ∼= X for any X ∈ C′.)

(iii) If X → Y → Z → T (X) is a distinguished triangle in C and two out of X,Y, Z are in C′, then
so is the third.
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(iv) (C′, T ) is a triangulated category (in particular additive) and the inclusion (C′, T )→ (C, T ) is
an exact functor.3

§7. The opposite triangulated category

Let (C, T ) be a triangulated category. Fix an inverse T−1 : C ∼−→ C of T . We want to put a
triangulated structure on the opposite category (Cop, T−1).

Observation 7.1. Since T is an equivalence of categories, its inverse T−1 is a left adjoint of T ,
meaning that we have a natural (in X and Y ) isomorphism

HomC(X,T (Y )) ∼−→ HomC(T
−1(X), Y ),(7.1)

w 7−→ w̃,

ṽ ←− [ v.

Concretely, fix the natural isomorphism α : T−1T ∼−→ idC which corresponds to idT under the above
isomorphism. Then (7.1) is given by w̃ = αY ◦ T−1(w) for w : X → T (Y ). In order to describe the
inverse, let β : idC → TT−1 be the morphism corresponding to idT−1 under (7.1). We then have
commutative diagrams

T−1(X) T−1TT−1(X) T (Y ) TT−1T (Y )

T−1(X) T (Y );

T−1(βX)

id
αT−1(X)

βT (Y )

id
T (αY )

indeed, the left triangle commutes by definition of β, and the right triangle commutes, because both
idT (Y ) and T (αY ) ◦ βT (Y ) correspond to αY under the isomorphism (7.1).

Then the inverse of (7.1) is given by ṽ = T (v) ◦ β. In particular, as T is an equivalence of
categories, the Yoneda lemma implies that β is an isomorphism as well.

To summarize, T : C ∼−→ C is an adjoint equivalence.

Remark 7.2. Let (C, T ) be a triangulated category. Then a triangle X u−→ Y
v−→ Z

w−→ T (X) is
distinguished if and only if the “unshifted” triangle

T−1(Z)
−w̃−−→ X

u−→ Y
βZv−−→ TT−1(Z)

is distinguished.

Proof. Note that we have an isomorphism of triangles

X Y Z T (X)

X Y TT−1(Z) T (X),

u v w

βZ

u βZv T (w̃)

3In fact, we could have defined a triangulated subcategory as an exact functor (C′, S)→ (C, T ) whose underlying
functor C′ ↪→ C is fully faithful.
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where the bottom triangle is the shift of (−w̃, u, βZv). Hence the claim follows from Proposition 4.10.

Notation 7.3. If f : X → Y is a morphism in a category C, we denote by fop : Y → X the
corresponding morphism in the opposite category Cop. Note that (f ◦ g)op = gop ◦ fop whenever the
composition makes sense.

Definition 7.4. Let (C, T ) be a triangulated category. A triangle

X
uop

−−→ Y
vop

−−→ Z
wop

−−→ T−1(X)

in (Cop, T−1) is called distinguished if the corresponding triangle

Z
v−→ Y

u−→ X
w̃−→ T (Z) (equivalently, Y u−→ X

w̃−→ T (Z)
−T (v)−−−−→ T (Y ))

is distinguished in (C, T ).

Proposition 7.5. Let (C, T ) be a triangulated category. Then the opposite category (Cop, T−1) is
triangulated.

Proof. We verify axiom (T1). Clearly, every triangle isomorphic to a distinguished triangle is

distinguished. We need to check that the triangle X
idop
X−−→ X → 0 → T−1(X) is distinguished.

The corresponding triangle in C is given by 0→ X
idX−−→ X → T (0), which is clearly distinguished.

Let now uop : X → Y be a morphism in Cop. Then u : Y → X sits in a distinguished triangle
Y

u−→ X
w̃−→ T (Z)

−T (v)−−−−→ T (Y ) of C, where we have used that T is an equivalence and w 7→ w̃ is
bijective. But this means that the corresponding triangle (uop, vop, wop) is distinguished in Cop,
which finishes the verification of (T1).

We next check axiom (T2), so let X uop

−−→ Y
vop

−−→ Z
wop

−−→ T−1(X) be a distinguished triangle in
Cop. We need to check that the shifted triangle (vop, wop,−T−1(uop)) is distinguished. By definition,
the triangle (v, u, w̃) is distinguished in C. By Remark 7.2 the triangle (−w, v, βXu) is distinguished,
which is isomorphic to (w, v,−βXu) via (−idT−1(X), idZ , idY ). Again by definition, we conclude
that the triangle (wop, vop, (−β̃Xu)op) is distinguished in Cop. But now the claim follows from the
computation β̃Xu = αT−1(X)T

−1(βXu) = αT−1(X)T
−1(βX)T−1(u) = T−1(u).

Finally, we need to check the octahedral axiom (T3). So let

X
fop

−−→ Y
f ′op

−−→ Z ′
f ′′op

−−−→ T−1(X),

Y
gop

−−→ Z
g′op

−−→ X ′
g′′op

−−−→ T−1(Y ),

X
hop

−−→ Z
h′op

−−→ Y ′
h′′op

−−−→ T−1(X)

be distinguished triangles in Cop, where h = f ◦ g. We need to find morphisms uop, vop such that

Z ′
uop

−−→ Y ′
vop

−−→ X ′
(g′′T−1(f ′))op

−−−−−−−−−→ T−1(Z ′)(7.2)
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is a distinguished triangle and such that the diagram

Z ′ T−1(X)

Y Y ′ T−1(Y )

X Z X ′ T−1(Z ′).

f ′′op

uop T−1(f)opf ′op

gop

h′′op

vop T−1(f ′)opfop

hop

h′op

g′op

g′′op

(g′′T−1(f ′))op

commutes. Concretely, we need to verify the following equalities of morphisms in C:

f ′ ◦ u = g ◦ h′ : Y ′ → Y(7.3)

f ′′ = u ◦ h′′ : T−1(X)→ Z ′(7.4)
g′ = h′ ◦ v : X ′ → Z(7.5)

h′′ ◦ T−1(f) = v ◦ g′′ : T−1(Y )→ Y ′.(7.6)

By assumption, we have distinguished triangles

Y
f−→ X

f̃ ′′−−→ T (Z ′)
−T (f ′)−−−−→ T (Y ),

Z
g−→ Y

g̃′′−→ T (X ′)
−T (g′)−−−−→ T (Z),

Z
h−→ X

h̃′′−−→ T (Y ′)
−T (h′)−−−−→ T (X)

in C. By (T3), and since T is an equivalence of categories, there exist morphisms u : Z ′ → Y ′ and
v : Y ′ → X ′ in C such that

T (X ′)
T (v)−−−→ T (Y ′)

T (u)−−−→ T (Z ′)
−T (g̃′′f ′)−−−−−−→ T 2(X ′)

is a distinguished triangle in C. Then also (−T (v),−T (u),−T (g̃′′f ′)) is distinguished, which arises
as the triple shift of the triangle

X ′
v−→ Y ′

u−→ Z ′
g̃′′f ′−−−→ T (X ′),

which by Proposition 4.10 is itself distinguished. But this means that the triangle (7.2) is distin-
guished, since g̃′′ ◦ f ′ = (g′′ ◦ T−1(f ′))∼ by naturality of the isomorphism (7.1).
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Moreover, we know from (T3) that the diagram

T (X ′) T (Z)

Y T (Y ′) T (Y )

Z X T (Z ′) T 2(X ′)

−T (g′)

T (v) T (g)g̃′′

f

−T (h′)

T (u) T (g̃′′)g

h

h̃′′

f̃ ′′

−T (f ′)

−T (g̃′′f ′)

commutes. We deduce that the following identities of morphisms in C:

−T (f ′) ◦ T (u) = T (g) ◦
(
−T (h′)

)
,

f̃ ′′ = T (u) ◦ h̃′′,
−T (g′) = −T (h′) ◦ T (v),

h̃′′ ◦ f = T (v) ◦ g̃′′.

These prove the identities (7.3), (7.4), (7.5) and (7.6): Indeed, for the first and third identity this
is clear from the fact that T is an equivalence of categories. For the second and fourth identity we
use that the isomorphism in (7.1) is natural, so that T (u) ◦ h̃′′ = ũ ◦ h′′, h̃′′ ◦ f =

(
h′′ ◦ T−1(f)

)∼
and T (v) ◦ g̃′′ = ṽ ◦ g′′. Hence, Cop satisfies the axiom (T3).

This finishes the proof that (Cop, T−1) is triangulated.

Exercise 7.6. Let (C, T ) and (D, S) be triangulated categories. Check that a contravariant exact
functor (C, T ) → (D, S) (i.e., an exact functor (Cop, T−1) → (D, S)) is given by a pair (F, ξ)
consisting of a contravariant functor F : C → D and a natural equivalence ξ : F ∼−→ SFT such that
for every distinguished triangle X u−→ Y

v−→ Z
w−→ T (X) in C the triangle

F (Z)
F (v)−−−→ F (Y )

F (u)−−−→ F (X)
ξXSF (w)−−−−−−→ SF (Z)

is distinguished in D.

A. Homotopy pullbacks and homotopy pushouts

Definition A.1. Let (C, T ) be a triangulated category. A commutative square

X Y

X ′ Y ′

f

u

g

u′
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is called a homotopy cartesian if there exists a morphism d : Y ′ → T (X) such that

X
( u
−f )
−−−−→ Y ⊕X ′ (g,u′)−−−→ Y ′

d−→ T (X)(1.1)

is a distinguished triangle. To signify that a commutative square is homotopy cartesian, we put a
‘�’ in the center of the diagram. If the above square is homotopy cartesian, we call:

• X a homotopy pullback of X ′ u
′

−→ Y ′
g←− Y , and

• Y ′ a homotopy pushout of X ′ f←− X u−→ Y .

Proposition A.2. Let (C, T ) be a triangulated category. Let

X Y

X ′ Y

f

u

� g

u′

be a homotopy cartesian square.

(i) C admits all homotopy pullbacks and homotopy pushouts.
(ii) For every commutative diagram with solid arrows

X Y

X ′ Y ′

W

f

u

� g
a

b

u′

∃ψ

there exists a map ψ : Y ′ →W such that b = ψu′ and a = ψg; if moreover HomC(T (X),W ) =
0, then ψ is unique.

Dually, for all maps X ′ b←− W
a−→ Y such that u′b = ga, there exists a map ψ : W → X such

that uψ = a and fψ = b; if moreover HomC(W,T
−1(Y ′)) = 0, then ψ is unique.

(iii) Every distinguished triangle X u−→ Y
v−→ Z

w−→ T (X) can be completed to a morphism of
distinguished triangles

X Y Z T (X)

X ′ Y ′ Z T (X ′).

f

u

� g

v w

T (f)

u′ v′ w′

(iv) For every commutative diagram with solid arrows

Z X Y T (Z)

Z ′ X ′ Y ′′ T (Z ′),

h ∼

w

f

u

� g′

v

T (h)

w′′ u′′ v′′
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where h is an isomorphism and the rows are distinguished triangles, there exists a map g′

making the whole diagram commutative and the middle square homotopy cartesian.

Proof. Part (i) is clear from (T1): Given a diagram X ′
f←− X u−→ Y , we may complete the morphism

X
( u
−f )
−−−−→ Y ⊕X ′ to a triangle as in (1.1).
We next prove (ii). By Proposition 4.7(ii) the functor HomC(−,W ) is cohomological. Applying

it to the distinguished triangle X → Y ⊕X ′ → Y ′ → T (X) yields a long exact sequence

HomC(T (X),W )
d∗−→ HomC(Y

′,W )

 g∗
u′∗


−−−−−→ HomC(Y ⊕X ′,W )

(u∗,−f∗)−−−−−−→ HomC(X,W ).

Now, we have (u∗,−f∗)( ab ) = au − bf = 0. Hence, there exists ψ ∈ HomC(Y
′,W ) such that(

ψg
ψu′

)
=
(
g∗

u′∗

)
(ψ) = ( ab ). Moreover, if HomC(T (X),W ) = 0, then ψ is unique. The dual assertion

follows similarly using that HomC(W,−) is cohomological.

We now prove (iii). Factor u as the composite X
( u
−f )
−−−−→ Y ⊕X ′ pY−−→ Y , and obtain the following

distinguished triangles:

X
( u
−f )
−−−−→ Y ⊕X ′ (g,u′)−−−→ Y ′

d−→ T (X),

Y ⊕X ′ pY−−→ Y
0−→ T (X ′)

−T (iX′ )−−−−−→ T (Y ⊕X ′),

X
u−→ Y

v−→ Z
w−→ T (X);

note that the second triangle is distinguished by Proposition 5.3(ii) and (T2). By (T3) we obtain a
distinguished triangle

Y ′
v′−→ Z

w′−→ T (X ′)
−T (u′)−−−−→ T (Y ′).

Now, applying Proposition 4.10 shows that X ′ u
′

−→ Y ′
v′−→ Z

w′−→ T (X ′) is distinguished. Moreover,
we have a commutative diagram

Y ′ T (X)

Y ⊕X ′ Z T (Y ⊕X ′)

X Y T (X ′) T (Y ′).

d

v′ T (( u
−f ))(g,u′)

pY

w

w′ T ((g,u′))( u
−f )

u

v

0

−T (iX′ )

−T (u′)

In particular, we deduce the relations v′g = v and w′ = T (f)w. We thus obtain the desired
morphism of distinguished triangles.
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Finally, let us prove (iv). By (iii) (and a shift of triangles) we obtain the following commutative
diagram with solid arrows

Z X Y T (Z)

Z X ′ Y ′ T (Z)

Z ′ X ′ Y ′′ T (Z ′),

w

f

u

g

v

w′

h ∼

u′ v′

ψ T (h)

w′′ u′′ v′′

where the rows are distinguished triangles and the top middle square is homotopy cartesian. By
Proposition 4.4 we find a morphism ψ making the whole diagram commutative. Now, ψ is an
isomorphism by Proposition 4.7(iii). But then putting g′ := ψ ◦ g proves the assertion.



Chapter 3

Localization of Categories

The localization of triangulated categories in a special case of the localization of ordinary categories,
so we will treat the latter first.

§8. Localization of additive categories

Let us first look at the example of localization of rings.1

Example 8.1. Let A be a ring and S ⊆ A a subset. By possibly increasing S, we may assume
1 ∈ S and that a, b ∈ S implies ab ∈ S. The localization of A at S is a pair (A[S−1], ι), where
A[S−1] is a ring and ι : A → A[S−1] is a ring map with ι(S) ⊆ A[S−1]×, satisfying the following
universal property: For every ring R and every ring morphism f : A → R with f(S) ⊆ R× there
exists a unique ring map f : A[S−1]→ R making the following diagram commute:

A R

A[S−1].

ι

f

f

In other words: Precomposition with ι induces an injection

HomRing(A[S−1], R) ↪−→ HomRing(A,R)

whose image consists of those ring maps f : A→ R satisfying f(S) ⊆ R×.

The notion of localization of categories is analogous, but “one categorical level higher”.

Definition 8.2. Let C be a category and S a class of morphisms in C. A localization of C with
respect to S consists of a pair (C[S−1], Q), where C[S−1] is a category and Q : C → C[S−1] is a
functor such that Q(s) is invertible for every s ∈ S, which satisfies the following universal property:
For all categories D the natural functor

Fun(C[S−1],D)
Q∗−−→ Fun(C,D)

1Observe that a ring is the same thing as an Ab-enriched category with one object.

47
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given by precomposition with Q induces an equivalence onto the full subcategory FunS(C,D) ⊆
Fun(C,D) of those functors F : C → D sending each morphism in S to an isomorphism in D.

In other words:

(1) For every functor F : C → D sending the morphisms in S to isomorphisms in D, there exists
a functor F : C[S−1] → D and a natural isomorphism θ : F

∼
=⇒ F ◦ Q, that is, there is a

commutative diagram
C D

C[S−1];

Q

F

F

θ
∼

(2) For all functors F ,G : C[S−1]→ D the map

HomFun(C[S−1],D)(F ,G) ∼−→ HomFun(C,D)(F ◦Q,F ◦Q),(8.1)

α 7−→ αQ

is bijective.

Remark 8.3. Let Q : C → C[S−1] be a localization functor and D a category.

(a) The fully faithfulness of Q∗ : Fun(C[S−1],D) ↪→ Fun(C,D) implies that a natural transforma-
tion α : F =⇒ G of functors C[S−1]→ D is an isomorphism if and only if αQ : FQ =⇒ GQ is
an isomorphism of functors C → D.

(b) Given a functor F : C → D, the pair (F , θ : F
∼

=⇒ F ◦Q) is unique up to unique isomorphism:
For every other pair (F

′
, θ′ : F

∼
=⇒ F

′ ◦ Q) we obtain from (2) above a unique natural
transformation α : F =⇒ F

′
such that θ′ = αQ ◦ θ. Now, αQ = θ′ ◦ θ−1 is an isomorphism,

and hence (a) implies that α is an isomorphism as well.

Remark 8.4. (a) The localization (C[S−1], Q) always exists. A proof is sketched in [GM03, III.2].
However, it may happen that C[S−1] is not locally small (meaning that the Hom spaces are
proper classes). Even when C[S−1] is locally small, this is usually highly non-trivial to prove.

(b) The localization (C[S−1], Q) is unique in the following sense: If (C̃[S−1], Q̃) is another local-
ization, then there exists an equivalence of categories F : C[S−1] ∼−→ C̃[S−1] and a natural
isomorphism θ : Q̃

∼
=⇒ FQ. Moreover, the pair (F , θ) is unique up to unique isomorphism.

Proof. By the universal property of C[S−1], there exists a functor F : C[S−1]→ C̃[S−1] and a
natural isomorphism θ : Q̃

∼
=⇒ FQ. Similarly, by the universal property of C̃[S−1] there exists

a functor G : C̃[S−1] → C[S−1] and a natural isomorphism τ : Q
∼

=⇒ GQ̃. Now we have an
isomorphism

Gθ ◦ τ : Q
∼

=⇒ GFQ

of functors C → C[S−1], and hence by (2) above there exists a unique natural isomorphism
α : idC[S−1]

∼
=⇒ GF of functors C[S−1] → C[S−1] such that αQ = Gθ ◦ τ . Similarly, we have

an isomorphism

Fτ ◦ θ : Q̃
∼

=⇒ FGQ̃
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of functors C → C̃[S−1], and hence by (2) above there exists a unique natural isomorphism
β : id

C̃[S−1]

∼
=⇒ FG of functors C̃[S−1]→ C̃[S−1] such that βQ̃ = Fτ ◦ θ. In particular, F and

G are equivalences which are quasi-inverse to each other. The uniqueness of (F , θ) is discussed
in Remark 8.3(b).

Example 8.5. Let A be an abelian category. Consider the category C(A) of complexes in A and
let qis be the class of quasi-isomorphisms in C(A). Then

D(A) := C(A)[qis−1]

is the (unbounded) derived category of A. We similarly define the bounded derived categories
D+(A), D−(A) and Db(A).

Our next immediate goal is to prove that localizations of additive categories are again additive.
We follow the outline sketched in [Cu10].

Lemma 8.6. Let C be a category and S a class of morphisms in C. Then the localization functor
Q : C → C[S−1] is essentially surjective.

Proof. We factor Q as a composite of functors Q1 : C →→ CS and Q2 : CS ↪→ C[S−1], where CS is the
essential image of Q. Note that Q1 inverts the morphisms in S, and hence the universal property of
C[S−1] provides a functor R : C[S−1]→ CS together with a natural isomorphism θ : Q1

∼
=⇒ R◦Q. We

obtain a natural isomorphism Q2θ : Q
∼

=⇒ Q2◦R◦Q, and by (2) in Definition 8.2 and Remark 8.3(a),
we find a unique isomorphism ϕ : idC[S−1]

∼
=⇒ Q2 ◦ R such that ϕQ = Q2θ. We deduce that Q2,

and therefore also Q = Q2 ◦Q1, is essentially surjective.

Lemma 8.7. Let C, D be categories with chosen classes of morphisms S, T , respectively. Suppose
that S and T contain the identities. Then there is a natural equivalence of categories

(C × D)[(S × T )−1] ∼−→ C[S−1]×D[T−1]

which is compatible with the localization functors.

Proof. Let E be a category. We have to check that the essential images of the functors

Fun
(
(C × D)[(S × T )−1], E

)
↪−→ Fun(C × D, E)←−↩ Fun

(
C[S−1]×D[T−1], E

)
agree. In other words, we need to show that a functor F : C × D → E inverts the morphisms in
S × T if and only if it inverts the morphisms in S and T ; but this is obvious from our hypothesis
that S and T contain the identities (every morphism (s, t) ∈ S × T decomposes as (s, id) ◦ (id, t)).

We deduce that the categories (C × D)[(S × T )−1] and C[S−1] × D[T−1] (together with their
localization functors) satisfy the same universal property. By Remark 8.4(b) the canonical functor
in the assertion is an equivalence of categories.

Lemma 8.8. Let C, D be categories with chosen classes of morphisms S, T , respectively. Let
L : C � D :R be an adjunction such that L(S) ⊆ T and R(T ) ⊆ S.

Then there is an induced adjunction LS : C[S−1]� D[T−1] :RT . Moreover:

(i) There are natural isomorphisms LSQC ∼= QDL and QCR ∼= RTQD which are obtained from
each other by the adjunctions.
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(ii) If the unit η : idC → RL is an isomorphism, then so is the unit ηS : idC[S−1] → RTLS. Similarly,
if the counit ε : LR→ idD is an isomorphism, then so is the counit εT : LSRT → idD[T−1].

Proof. Recall that an adjunction comes with natural transformations ε : LR→ idD and η : idC → RL
such that the following triangles commute:

L LRL R RLR

L L.

Lη

idL
εL

ηR

idR
Rε

Now, since L(S) ⊆ T , the functor QDL : C → D[T−1] inverts the morphisms in S. Hence, there
exists a unique pair (LS , ϕL) consisting of a functor LS : C[S−1] → D[T−1] and a natural isomor-
phism ϕL : LSQC

∼−→ QDL. Similarly, there exists a unique pair (RT , ϕR) consisting of a functor
RT : D[T−1]→ C[S−1] together with a natural isomorphism ϕR : QCR

∼−→ RTQD.
We define ηS : idC[S−1] → RTLS as the image of η under the map

Hom(idC , RL)
QC−−→ Hom(QC , QCRL) ∼= Hom(QC , RTLSQC)

∼= Hom(idC[S−1], RTLS).

We similarly define εT : LSRT → idD[T−1]. Concretely, this means that the following two diagrams
commute:

(8.2)
QC RTLSQC LSQCR LSRTQD

QCRL RTQDL QDLR QD.

QCη

ηSQC

RTϕL∼

LSϕR
∼

ϕLR ∼ εTQD

ϕRL

∼
QDε

From the diagrams we observe that, if η is an isomorphism, then so is ηSQC . As QC is a localization
functor, it follows that ηS is an isomorphism. Similarly, if ε is an isomorphism, then so is εT .

It remains to prove that (LS , RT , ηS , εT ) defines an adjunction, i.e., that RT εT ◦ ηSRT = idRT
and εTLS ◦LSηS = idLS . By (8.1) these identities can be checked after precomposing with QD and
QC , respectively. We only verify the first identity, because the second one is analogous. Consider
the diagram

QCRLR QCR

RTQDLR RTQD

QCR RTLSQCR

RTQD RTLSRTQD.

ϕRLR∼

QCRε

ϕR∼
RTQDε

QCηR

ηSQCR

ϕR ∼ RTLSϕR∼

RTϕLR∼

ηSRTQD

RT εTQD

The small squares commute by naturality of ηS and ε, and the “triangles” are the commutative
diagrams (8.2). Hence the whole diagram commutes. We thus have

(RT εTQD) ◦ (ηSRTQD) ◦ ϕR = ϕR ◦ (QCRε) ◦ (QCηR) = ϕR = (idRTQD) ◦ ϕR,
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where the second identity holds because Rε ◦ ηR = idR. As ϕR is an isomorphism, we deduce the
right triangle identity for (LS , RT , ηS , εT ). The left triangle identity is analogous and left to the
reader.

The assertion that ϕL and ϕR are mates means that we obtain each from the other via

ϕL = (εTQDL) ◦ (LSϕRL) ◦ (LSQCη),

ϕR = (RTQDε) ◦ (RTϕLR) ◦ (ηSQCR).

(In fact, the two identities are equivalent: Exercise!) Indeed, we have a commutative diagrams

QCR RTLSQCR

QCRLR RTQDLR

QCR RTQD

ηSQCR

QCηR RTϕLR

QCRε

ϕRLR

RTQDε

ϕR

LSQC LSQCRL

LSRTLSQC LSRTQDL

LSQC QDL,

LQCη

LSηSQC LSϕRL

εTLSQC

LSRTϕL

εTQDL

ϕL

where the top diagrams commute by (8.2) and the bottom diagrams commute because ϕR and εT
are natural. This proves the claim.

Example 8.9. Let C be a category and I a set; we will only need the cases I = ∅ and I = {1, 2}.
Consider the diagonal functor ∆: C → CI given on objects by ∆(C) = (C)i and on morphisms by
∆(f) = (f)i.

(a) ∆ admits a right adjoint R : CI → C if and only if C admits I-fold products. In this case, R
is given by R(Ci)i =

∏
i∈I Ci and the unit idC → R∆ is given by the diagonal C →

∏
i∈I C.

Indeed, for all A ∈ C we have natural bijections

HomC(A,R(Ci)i) = HomCI
(
(A)i, (Ci)i

)
=
∏
i∈I

HomC(A,Ci) = HomC

(
A,
∏
i

Ci

)
.

Hence the claim follows from the Yoneda lemma.

(b) ∆ admits a left adjoint L : CI → C if and only if C admits I-fold coproducts. In this case, L is
given by L(Ci)i =

⊔
i∈I Ci and the counit L∆→ idC is given by the fold map

⊔
i∈I C → C.

Proposition 8.10. Let C be an additive category. Let S be a class of morphisms which is closed
under biproducts. Concretely, this means:

(a) S contains all identities: for every C ∈ C we have idC ∈ S;
(b) S is closed under binary biproducts: if s, t ∈ S, then s⊕ t ∈ S.

Then C[S−1] is an additive category and Q : C → C[S−1] is additive.
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Proof. We first check that C[S−1] admits biproducts. Let I be a finite set (think of I = ∅ and
I = {1, 2}). The diagonal functor ∆: C → CI admits a right adjoint R by Example 8.9, which
agrees with the biproduct. We put T = SI . Then ∆(S) ⊆ T and our hypothesis on S ensures that
R(T ) ⊆ S. By Lemma 8.7 we have a commutative diagram

C CI

C[S−1] CI [T−1]

C[S−1]I

∆

Q QCI

QI
∆

∆
∼

.

By Lemma 8.8 the functor ∆: C[S−1] → CI [T−1] ∼= C[S−1]I admits a right adjoint RT , and the
natural transformation ϕR : QR ∼−→ RTQ

I (coming from the obvious isomorphism ∆Q ∼−→ QI∆) is
an isomorphism.

Hence, C[S−1] admits finite products and the localization functor Q : C → C[S−1] preserves them.
A completely analogous argument shows that C[S−1] admits finite coproducts and Q preserves them.
As a consequence, C[S−1] has biproducts and the localization functor Q is additive.

It remains to show that for every object C ∈ C[S−1] the canonical structure of a commutative
monoid on C is a group or, equivalently, the embedding i : CGrp(C[S−1]) ↪→ CMon(C[S−1]) = C[S−1]
is essentially surjective. Observe that Q factors as the composition

C = CGrp(C) −→ CGrp(C[S−1])
i
↪−→ C[S−1].

Now, Q is essentially surjective by Lemma 8.6, hence so is i.

In the next section we will study the following situation.

Exercise 8.11. Let C be a category and S a class of morphisms of C. Suppose that the localization
functor Q : C → C[S−1] admits a right adjoint R : C[S−1]→ C. Show that R is fully faithful.

§9. Bousfield localizations

One of the most important examples of localizations are Bousfield localizations.

Definition 9.1. Let Q : C � D :R be an adjunction.

(a) Q is called a Bousfield localization if R is fully faithful (equivalently: the counit QR ∼−→ idD
is an isomorphism).

(b) A morphism f in C is called an R-local equivalence if Q(f) is an isomorphism in D.
(c) An object X ∈ C is called R-local if for all R-local equivalences f : A→ B the map

f∗ : HomC(B,X) ∼−→ HomC(A,X)

is bijective.
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Example 9.2. (1) Let X be a topological space and consider the (full) inclusion Shv(X) ↪→
PSh(X) of sheaves into all presheaves. Its left adjoint, called sheafification is a Bousfield
localization. The local equivalences are given by all maps F → G of presheaves such that
Fx ∼−→ Gx is an isomorphism for all x ∈ X.

(2) Consider the (full) inclusion Ab ↪→ Grp of abelian groups into all groups. Its left adjoint
G 7→ Gab, called abelianization is a Bousfield localization.

(3) Consider the (full) inclusion BanR ↪→ NormR of Banach spaces into the category of all normed
real vector spaces with bounded linear operators. Its left adjoint, which is given by completion,
is a Bousfield localization.

(4) (Later, see Theorem 15.6) Let R be a ring. Then the localization functor Q : K+(R)→ D+(R)
admits a fully faithful right adjoint given by taking injective resolutions.

Remark 9.3. Observe that the class of R-local equivalences has the following properties:

(a) Every isomorphism is an R-local equivalence.

(b) R-local equivalences satisfy the 2-out-of-3 property : If f, g are composable morphisms in C
and two of f , g, g ◦ f are isomorphisms, then so is the third.

Theorem 9.4. Let Q : C → D be a Bousfield localization with fully faithful right adjoint R and unit
η : idC → RQ.

(i) For every A ∈ C the unit ηA : A→ RQ(A) is an R-local equivalence.

(ii) Let f : A→ B be an R-local equivalence between R-local objects. Then f is an isomorphism.

(iii) For every D ∈ D the object R(D) is R-local.

(iv) Let CR-loc ⊆ C be the full subcategory of R-local objects. Then Q restricts to an equivalence of
categories

Q′ : CR-loc ∼−→ D.

In particular, an object of C is R-local if and only if it is isomorphic to an object of the form
R(D) (D ∈ D).

(v) The functor Q exhibits D as the localization of C at the class S of R-local equivalences:

D = C[S−1].

In particular, C[S−1] is a locally small category.

Proof. Recall that R being fully faithful means that the counit ε : QR ∼−→ idD is an isomorphism.
We prove (i), so let A ∈ C. By the left triangle identity for adjunctions, we have εQ(A) ◦Q(ηA) =

idQ(A). As εQ(A) and idQ(A) are isomorphisms, so is Q(ηA).
Let us prove (ii), so let f : A→ B be an R-local equivalence between R-local objects. Since A is

local, there exists a map g : B → A such that g ◦ f = idA. By the 2-out-of-3 property (Remark 9.3),
g is an R-local equivalence. As B is R-local, there exists a map h : A→ B such that h ◦ g = idB . It
follows that g is an isomorphism, hence so is f .
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For part (iii), let D ∈ D and let f : A→ B be an R-local equivalence in C. Since Q is left adjoint
to R, we have a commutative diagram

HomC(B,R(D)) HomC(A,R(D))

HomD(Q(B), D) HomD(Q(A), D),

∼

f∗

∼

Q(f)

∼

where the bottom horizontal map is an isomorphism because f is an R-local equivalence. We deduce
that the top horizontal map is an isomorphism. As f was arbitrary, it follows that R(D) is R-local.

We prove (iv). By part (iii) it is clear that Q′ is left adjoint to R and that the counit Q′R ∼−→ idD
is an isomorphism. It remains to prove that the unit η : idCR-loc → RQ′ is an isomorphism. By (i)
it suffices to show that every R-local equivalence f : A → B between R-local objects is invertible.
But this is the content of (ii).

We finally prove (v). It is obvious from the definition that Q sends R-local equivalences to
isomorphisms in D. Let now E be another category. Observe that the adjunction (Q,R, η, ε) induces
an adjunction

R∗ : Fun(C, E)� Fun(D, E) :Q∗

with unit η∗ : id→ Q∗R∗ given by η∗F : F
Fη−−→ FRQ = Q∗R∗(F ) and counit ε∗ : R∗Q∗ ∼−→ id given

by ε∗G : R∗Q∗(G) = GQR
Gε−−→ G. We need to check the triangle identities ε∗R∗F ◦R∗η∗F = idR∗F and

Q∗ε∗G ◦ η∗Q∗G = idQ∗G for all functors F : C → E and G : D → E . But this is equivalent to checking
that the diagrams

FR FRQR GQ GQRQ

FR GQ

idFR

FηR

FRε
idGQ

GQη

GεQ

commute, which is clear from the triangle identities for Q a R.
Since the counit is an isomorphism, we deduce that Q∗ is fully faithful. The essential image of

Q∗ consists of all functors F : C → E sending R-local equivalences to isomorphisms in E . Indeed, if
F inverts R-local equivalences, then by (i) the natural transformation Fη : F → FRQ = Q∗R∗F is
an isomorphism, hence F lies in the essential image of Q∗. The other direction is trivial, because
Q∗ inverts R-local equivalences.

Remark 9.5. We will prove in Proposition 13.9 a criterion to determine when a localization functor
is a Bousfield localization.

Exercise 9.6. Let Q : C → D be a Bousfield localization with fully faithful right adjoint R and let I
be a small category. Show that a diagram F : I → D admits a (co)limit in D whenever RF : I → C
admits one, and in that case the canonical maps

colimF ∼−→ Q(colimRF ) and Q(limRF ) ∼−→ limF

are isomorphisms in D. Deduce that, if C is (co)complete, then so is D.
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Exercise 9.7. Let Q : A → B be a Bousfield localization between abelian categories, and suppose
that Q is exact. Denote by R the fully faithful right adjoint of Q.

(i) Show that a morphism f in A is R-local if and only if Q(Ker(f)) = 0 = Q(Coker(f)).

(ii) Let I be a small category and suppose that the formation of I-indexed (co)limits in A is
exact. Show that Ker(Q) is closed under I-indexed (co)limits if and only if Q preserves them.

(Hint: To show that Q preserves I-indexed limits if Ker(Q) is closed under these, proceed
as follows: Let S be the class of R-local equivalences in A and T the class of pointwise R-local
equivalences in Fun(I,A). Observe that Q∗ : Fun(I,A)� Fun(I,B) :R∗ is a Bousfield localization
and T coincides with the R∗-local equivalences. The adjunction ∆: A � Fun(I,A) : lim satisfies
∆(S) ⊆ T and lim(T ) ⊆ S. Now conclude by Lemma 8.8.)

§10. Calculus of fractions

We now prove the existence of a localization in case we have a calculus of fractions.

Definition 10.1. Let C be a category. A class S of morphisms in C is called (left) multiplicative if
it satisfies the following conditions:

(S1) S contains every isomorphism in C.
(S2) If s, t are composable morphisms in S, then s ◦ t ∈ S.

(S3) Every diagram X
f←− Y s−→ Y ′ can be completed to a commutative diagram

Y Y ′

X X ′

f

s

g

t

in C with t ∈ S.
(S4) Let f, g : X ⇒ Y be two morphisms in C and let s : X ′ → X in S with f ◦ s = g ◦ s. Then

there exists t : Y → Y ′ in S such that t ◦ f = t ◦ g:

X ′ X Y Y ′.s
f

g

t

If these conditions are satisfied, we say that C admits a (left) calculus of fractions with respect to S.
Similarly, S is called a right multiplicative system if the corresponding class of morphisms in Cop

is a left multiplicative system. In this case, we say that C admits a right calculus of fractions.

Exercise 10.2. Show that Bousfield localizations admit a calculus of fractions with respect to the
local equivalences.

Notation 10.3. Let C be a category which admits a calculus of fractions with respect to S, and fix
X ∈ C. Recall that the slice category CX/ is defined as the category whose objects are morphisms



56 Chapter 3. Localization of Categories

f : X → Y , and

HomCX/
(
X

f−→ Y,X
g−→ Y ′

)
:=

h : Y → Y ′ in C

∣∣∣∣∣∣∣
X

Y Y ′

f g

h

commutes

 .

We define SX ⊆ CX/ as the full subcategory of all morphisms s : X → X ′ which lie in S.
Beware that a morphism in SX need not lie in S.

Lemma 10.4. Suppose that C admits a calculus of fractions with respect to S and fix X ∈ C. Then
SX is a filtered category.

Proof. We need to check the following conditions:

(a) For any s, s′ ∈ SX there exists t ∈ SX and morphisms s→ t, s′ → t.
(b) Let f, g : s ⇒ t be two morphisms in SX . Then there exists h : t → u in SX such that

h ◦ f = h ◦ g.

Part (a) follows immediately from (S3) and (S2). Part (b) is a reformulation of (S4).

Theorem 10.5. Suppose that C admits a calculus of fractions with respect to S. Then the localization
Q : C → C[S−1] exists. Moreover, Q commutes with finite colimites (provided these exist in C).

Proof. We define a category CS via

Ob(CS) := Ob(C),

and, for all X,Y ∈ Ob(CS),

HomCS (X,Y ) := lim−→
[Y→Y ′]∈SY

HomC(X,Y
′).

By Lemma 10.4 the category SY is filtered. The elements of HomCS (X,Y ) are equivalence classes
[f, s] represented by a roof (f, s) with s ∈ S, which we depict as

Z

X Y.

f s

Two roofs X f−→ Z
s←− Y and X f ′−→ Z ′

s′←− Y are called equivalent, written (f, s) ∼ (f ′, s′), if there
exist morphisms g : s→ s′′ and g′ : s′ → s′′ in SY such that gf = g′f ′, that is, the diagram

Z

X Z ′′ Y

Z ′

g
f

f ′

f ′′

s

s′

s′′

g′

commutes.
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Exercise. Show that ∼ is an equivalence relation.

We still need to define the composition in CS , for which we need some preparation.
Step 1: For every Y ∈ CS and every morphism h : [X

s−→ X ′]→ [X
s′−→ X ′′] in SX the map

h∗ : HomCS (X ′′, Y ) ∼−→ HomCS (X ′, Y )

is bijective. Note that s∗h∗ = s′∗ as maps HomCS (X ′′, Y ) → HomCS (X,Y ). By the 2-out-of-
3 property for isomorphisms, it suffices to show that s∗ and s′∗ are bijective. Without loss of
generality it suffices to check this only for s∗. If [f, t] ∈ HomCS (X,Y ) is arbitrary, then we can
complete the diagram Y ′

f←− X s−→ X ′ by (S3) to a commutative diagram

X X ′

Y Y ′ Y ′′

s

f f ′

t s′

such that s′ ∈ S. Then s′t ∈ S by (S2) and hence s∗([f ′, s′t]) = [f ′s, s′t] = [s′f, s′t] = [f, t]
showing that s∗ is surjective. In order to prove that s∗ is injective, consider morphisms f : X ′ → Y ′,
t : Y → Y ′, f ′ : X ′ → Y ′′, t′ : Y → Y ′′ with t, t′ ∈ SY such that s∗[f, t] = s∗[f ′, t′]. This means
(fs, t) ∼ (f ′s, t′), and hence we find maps g : t → t′′ and g′ : t′ → t′′ in SY such that gfs = g′f ′s.
By (S4) there exists h : t′′ → t′′′ in SY such that hgf = hg′f ′. But now (f, t) ∼ (hgf, t′′′) =
(hg′f ′, t′′′) ∼ (f ′, t′) showing that s∗ is injective.

Step 2: For each map h : [Y
s−→ Y ′]→ [Y

s′−→ Y ′′] in SY , composition in C induces a map

lim−→
[Y→Y ′]∈SY

HomCS (Y ′, Z)×HomC(X,Y
′)→ HomCS (X,Z).(10.1)

To see this, we have to check that the following diagram commutes:

(10.2)
HomCS (Y ′′, Z)×HomC(X,Y

′′) HomCS (X,Z)

HomCS (Y ′, Z)×HomC(X,Y
′′) HomCS (Y ′, Z)×HomC(X,Y

′).

∼h∗×id

◦

id×h∗

◦

To this end, take f ∈ HomC(X,Y
′) and [g, t] ∈ HomCS (Y ′, Z) which is represented by a roof

Y ′
g−→ Z ′

t←− Z. Then

(id× h∗)([g, t], f) =
(
[g, t], hf

)
∈ HomCS (Y ′, Z)×HomC(X,Y

′′).

We now construct the preimage under h∗ × id. From (S3) we get a commutative diagram

Y Z ′

Y ′′ W,

gs

hs=s′ s′′

g′
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where s′′ ∈ S. This means s′′gs = g′hs, and hence by (S4), there exists a map u : W → W ′ in S
such that us′′g = ug′h as maps Y ′ →W ′. Hence h∗([ug′, us′′t]) = [ug′h, us′′t] = [us′′g, us′′t] = [g, t].
Consequently, we get (h∗ × id)([ug′, us′′t], hf) = ([g, t], hf) = (id× h∗)([g, t], f). We compute

[g, t] ◦ f = [gf, t] = [ug′hf, us′′t] = [ug′, us′′t] ◦ hf,

which shows that the diagram (10.2) commutes.
Step 3: CS is a category. We define the composition on CS via the map

HomCS (Y,Z)×HomCS (X,Y ) = HomCS (Y, Z)× lim−→
[Y→Y ′]∈SY

HomC(X,Y
′)

= lim−→
[Y→Y ′]∈SY

HomCS (Y,Z)×HomC(X,Y
′)

∼←− lim−→
[Y→Y ′]∈SY

HomCS (Y ′, Z)×HomC(X,Y
′) (Step 1)

−→ HomCS (X,Z) (by (10.1)).

Concretely, let X f−→ Y ′
s←− Y and Y

g−→ Z ′
t←− Z be two roofs with s, t ∈ S. The composite

[g, t] ◦ [f, s] is then given by the roof [g′f, s′t],

Z ′′

Y ′ Z ′

X Y Z,

g′ s′

f s g t

where g′, s′ are morphisms such that g′s = s′g and s′ ∈ S (which exist by (S3)); note that s′t ∈ S
by (S2). The construction above shows that this definition is independent of the choices of g′, s′
and of the chosen representatives of [g, t] and [f, s].

It is obvious that the identity idX is represented by the roof (idX , idX) (where idX ∈ S by (S1)).
The associativity is trivial to check and left as an exercise.

Step 4: Construction of a canonical functor Q : C → CS which inverts S. Define Q as the
identity on objects and as the canonical inclusion

HomC(X,Y ) −→ lim−→
[Y→Y ′]∈SY

HomC(X,Y
′) = HomCS (X,Y ),

f 7−→ [f, idY ]

corresponding to idY ∈ S. We now check that Q inverts S: Let s : X → X ′ be in S, viewed as an
object of SX . Then precomposition with Q(s) = [s, idX′ ] is given by the isomorphism in Step 1.
Hence Q(s) is an isomorphism by the Yoneda lemma.

Step 5: Q : C → CS is a localization functor. Let F : C → D be a functor which inverts S. We
define a functor F : CS → D by F on objects and on morphisms by

HomCS (X,Y ) = lim−→
[Y→Y ′]∈SY

HomC(X,Y
′)

F−→ lim−→
[Y→Y ′]∈SY

HomD(F (X), F (Y ′))

∼= HomD(F (X), F (Y )),
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where the equivalence comes from the fact that the transition maps are bijective, because F inverts
all morphisms in SY by the 2-out-of-3 property. It is clear that F indeed defines a functor and
satisfies F = F ◦Q (strict equality!). It remains to show that, for two functors F ,G : CS ⇒ D the
natural map

HomFun(CS ,D)(F ,G) ∼−→ HomFun(C,D)(FQ,GQ),(10.3)
α 7−→ αQ

is bijective. Injectivity is obvious from the fact that Q is the identity on objects. For surjectivity,
let β : FQ → GQ be a natural transformation; hence for each X ∈ C we are given a morphism
βX : FQ(X)→ GQ(X) in D such that for all maps f : X → Y the diagram

FQ(X) GQ(X)

FQ(Y ) GQ(Y )

FQ(f)

βX

GQ(f)

βY

commutes in D. For each X ∈ Ob(CS) we put αX = βX . For each morphism f : X → Y in CS ,
represented by a roof X f−→ Y ′

s←− Y , we have f = Q(s)−1 ◦Q(f) and hence a commutative diagram

F (X) FQ(X) GQ(X) G(X)

FQ(Y ′) GQ(Y ′)

F (Y ) FQ(Y ) GQ(Y ) G(Y ),

F (f)

αX

βX

FQ(f) GQ(f)

G(f)
βY ′

αY

βY

FQ(s) ∼ GQ(s)∼

which shows β = αQ. Therefore the map (10.3) is bijective finishing the proof that (CS , Q) satisfies
the universal property of a localization.

It remains to prove that Q : C → CS preserves finite colimits. To this end, let I be a finite
category and F : I → C a diagram. For any Y ∈ CS we have natural isomorphisms

HomCS
(
Q(colim

I
F ), Y

) ∼= lim−→
[Y→Y ′]∈SY

HomC
(
colim
I

F, Y ′
)

∼= lim−→
[Y→Y ′]∈SY

lim
i∈Iop

HomC
(
F (i), Y ′

)
∼= lim
i∈Iop

lim−→
[Y→Y ′]∈SY

HomC
(
F (i), Y ′

)
∼= lim
i∈Iop

HomCS
(
QF (i), Y

)
,

where the third isomorphism uses the well-known fact that filtered colimits in Set commute with
finite limits (see, e.g., [KS06, Theorem 3.1.6]). This shows that Q colimI F is the colimit of
QF : I → CS .
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We draw the following immediate consequences from the proof of Theorem 10.5.

Corollary 10.6. Suppose that C admits a calculus of fractions with respect to S, and denote
Q : C → CS the localization functor.

(i) Every morphism in CS is of the form Q(s)−1 ◦Q(f) with s ∈ S.
(ii) Let f, g : X ⇒ Y be two morphisms in C. Then Q(f) = Q(g) if and only if there exists

s : Y → Z in S such that s ◦ f = s ◦ g.
(iii) Let f : X → Y be a morphism in C. Then Q(f) is an isomorphism if and only if there exist

morphisms g : Y → Z and h : Z →W such that g ◦ f ∈ S and h ◦ g ∈ S.

Proof. For (i), we observe that every morphism in CS is represented by a roof (f, s) and that
Q(s) ◦ [f, s] = Q(f) by (the proof of) Theorem 10.5.

We now prove (ii). By definition, we have Q(f) = Q(g) if and only if there exist s, t : Y → Z in
S such that the diagram

Y

X Z Y

Y

s
f

g
t

commutes. But this is equivalent to s ◦ f = t ◦ g and s = t.
Finally we show (iii). For the “only if” direction it suffices to show that if Q(f) is an isomorphism,

then there exists a morphism g with g ◦ f ∈ S. Because then Q(g) ◦Q(f) = Q(g ◦ f) and Q(f) are
isomorphisms, hence so is Q(g). But then there exists a morphism h such that h ◦ g ∈ S.

Suppose now that Q(f) is an isomorphism. The inverse is represented by a roof Y g′−→ Z ′
s←− X,

from which we deduce Q(g′ ◦ f) = Q(g′) ◦Q(f) = Q(s). By (ii) there exists t : Z ′ → Z in S such
that t ◦ g′ ◦ f = t ◦ s ∈ S. Hence g := t ◦ g′ is as desired.

Conversely, suppose that there are morphisms g : Y → Z and h : Z → W such that g ◦ f ∈ S
and h ◦ g ∈ S. Then Q(g) ◦ Q(f) = Q(g ◦ f) and Q(h) ◦ Q(g) = Q(h ◦ g) are isomorphisms. We
deduce that Q(g) is an isomorphism, and then Q(f) is one as well by 2-out-of-3.

Remark 10.7. Suppose that C admits a calculus of fractions with respect to S. The proof of
Theorem 10.5 shows that the localization CS is locally small if and only if for all X ∈ C the filtered
category SX is cofinally small.

Proposition 10.8. Suppose that C admits a calculus of fractions with respect to S. Let D ⊆ C be
a full subcategory such that either the conditions

(a) S ∩ D (i.e., the class of morphisms X → Y in S with X,Y ∈ D) is a multiplicative system;

(b) For all s : X → X ′ in S with X ∈ D there exists g : X ′ → Y with g ◦ s ∈ S ∩ D;

or the conditions

(a’) S ∩ D is a right multiplicative system;

(b’) For all s : Y ′ → Y in S with Y ∈ D there exists g : X → Y ′ with s ◦ g ∈ S ∩ D;
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are satisfied. Then the induced functor DS∩D ↪→ CS is fully faithful.

Proof. By (a) and Theorem 10.5 the localization QD : D → DS∩D exists. Since the composite
D ↪→ C QC−−→ CS inverts the morphisms in S ∩ D, there is a canonical functor DS∩D → CS (which is
compatible with the localization functors). We need to check that for all X,Y ∈ D the induced map

HomDS∩D (X,Y ) −→ HomCS (X,Y )

is bijective. Let f : X → Y be a morphism in CS , which is represented by some roof X g−→ Y ′
s←− Y .

By (b) there exists a map t : Y ′ → Z such that ts ∈ S ∩ D. Then f is also represented by the
roof X tg−→ Z

ts←− Y in D, so that f lies in the image of DS∩D proving surjectivity. In order to

prove injectivity, let f, f ′ : X → Y be morphisms in DS∩D represented by roofs X f−→ Z
s←− Y

and X f
′

−→ Z ′
s′←− Y , respectively. Supposing f = f ′ in CS , there exist morphisms u : s → s′′ and

u′ : s′ → s′′ in SY such that the diagram

Z

X Z ′′ Y

Z ′

u

f
′′

f

f
′

s

s′

s′′

u′

commutes in C. By (b) again, there exists t : Z ′′ → W such that ts′′ ∈ S ∩ D. Then f and f ′ are
both represented by the roofs (tf

′′
, ts′′), which proves injectivity.

Corollary 10.9. Suppose C admits a calculus of fractions with respect to S, and let D ⊆ C be a
full subcategory satisfying the following condition:

(∗) For all X ∈ C there exists s : X → Y in S with Y ∈ D.

Then S ∩ D is a multiplicative system and the functor DS∩D ∼−→ CS is an equivalence.

Proof. It is clear that S ∩D satisfies (S1) and (S2), and (S3), (S4) follow immediately from (∗) and
the fact that S is a multiplicative system. Hence S ∩ D is a multiplicative system. Moreover, (∗)
also implies condition (b) in Proposition 10.8, hence we deduce that DS∩D ↪→ CS is fully faithful.
It is essentially surjective again by (∗).

§11. Localization of triangulated categories

Definition 11.1. Let (C, T ) be a triangulated category and S a class of morphisms satisfying
(S1)–(S4). We say that S is compatible with the triangulation if it satisfies the following conditions:

(S5) s ∈ S ⇐⇒ T (s) ∈ S.
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(S6) Consider a commutative diagram with solid arrows

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′),

s

f

t

g

u

h

T (s)

f ′ g′ h′

where the rows are distinguished triangles, and suppose that s, t ∈ S. Then there exists u ∈ S
making the whole diagram commute.

Theorem 11.2. Let (C, T ) be a triangulated category and S a multiplicative system which is
compatible with the triangulation. Then:

(i) There is a unique (up to unique isomorphism) pair (TS , ξ) consisting of an equivalence
TS : CS ∼−→ CS and a natural isomorphism ξ : Q ◦ T ∼−→ TS ◦Q.

(ii) (CS , TS) has the unique structure of a triangulated category such that the localization functor
(Q, ξ) : (C, T )→ (CS , TS) is exact.

(iii) The pair (CS , Q) satisfies the following universal property: For all triangulated categories
(D, TD), precomposition with Q induces a fully faithful functor

Q∗ : Fun4(CS ,D) ↪−→ Fun4(C,D)

whose essential image consists of those exact functors which invert S.

Proof. We first argue that CS is additive. Let S be the class of morphisms in C which are inverted by
Q. Then the induced functor CS ∼−→ CS is an equivalence compatible with the localization functors.
From Theorem 10.5 we deduce that Q : C → CS preserves finite coproducts. Hence, S is closed
under coproducts (which are biproducts in C). We may thus apply Proposition 8.10 which shows
that CS ∼= CS is additive.

For part (i) we note that the functors T−1 : C � C : T form an adjoint equivalence satisfying
T−1(S) ⊆ S and T (S) ⊆ S by (S5). Now, by Lemma 8.8 we obtain an induced adjoint equivalence
T−1
S : CS � CS :TS and a natural isomorphism ξ : Q ◦ T ∼−→ TS ◦Q. Since Q is a localization, the

pair (TS , ξ) is unique (up to unique isomorphism) by Remark 8.3, which proves (i).
Let us prove (ii). We call a triangle in CS distinguished if it is isomorphic to a triangle of the

form

Q(X)
Q(f)−−−→ Q(Y )

Q(g)−−−→ Q(Z)
ξXQ(h)−−−−−→ TSQ(X)(11.1)

for some triangle (f, g, h) in C. Then clearly (idQ(X), 0, 0) is a triangle in CS . Let X → Y be a

morphism in CS represented by some roof X f−→ Y ′
s←− Y . By (T1) for C there exists a triangle

X
f−→ Y ′

g−→ Z
h−→ T (X) in C; but then we obtain an isomorphism of triangles

Q(X) Q(Y ) Q(Z) TSQ(X)

Q(X) Q(Y ′) Q(Z) TSQ(X).

Q(s)−1Q(f)

Q(s)

Q(gs) ξXQ(h)

Q(f) Q(g) ξXQ(h)
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Therefore, (T1) holds for CS .
We now verify (T2). Since the condition in (T2) is invariant under isomorphisms of triangles, we

may check it for the standard distinguished triangles. So consider the distinguished triangle (11.1).
We obtain an isomorphism of triangles

Q(Y ) Q(Z) Q(T (X)) TSQ(Y )

Q(Y ) Q(Z) TSQ(X) TSQ(Y ),

Q(g) Q(h)

ξX

−ξYQT (f)

Q(g) ξXQ(h) −TSQ(f)

where the top triangle is distinguished and the right rectangle commutes by naturality of ξ. Thus,
(T2) is satisfied.

We now check (T3). Let f : Q(X)→ Q(Y ) and g : Q(Y )→ Q(Z) be two morphisms in CS and
put h = g◦f . Let f and g be represented by the roofsX f0−→ Y0

s←− Y and Y g1−→ Z1
t←− Z, respectively.

By (T1) we can embed f0 into a distinguished triangle X = X0
f0−→ Y0

f ′0−→ Z ′0
f ′′0−−→ T (X0). Note

that we have an isomorphism of triangles

Q(X) Q(Y ) Q(Z ′0) TSQ(X)

Q(X0) Q(Y0) Q(Z ′0) TSQ(X0).

f

Q(s)

Q(f ′0s) ξXQ(f ′′0 )

Q(f0) Q(f ′0) ξX0
Q(f ′′0 )

By (S3) and (T1), the diagram Y0
s←− Y g1−→ Z1 can be completed to a commutative diagram

(11.2)
Y Z1 X ′1 T (Y )

Y0 Z0 X ′0 T (Y0),

s

g1

s0

g′1

s′0

g′′1

T (s)

g0 g′0 g′′0

with s0 ∈ S, and then (S6) provides s′0 ∈ S making the whole diagram commutative. Hence, the
image of (11.2) under Q is an isomorphism of triangles. Thus, we obtain an isomorphism of triangles

Q(Y ) Q(Z) Q(X ′1) TSQ(Y )

Q(Y0) Q(Z0) Q(X ′0) TSQ(Y0).

g

Q(s)

Q(g′1t)

Q(s0t)

ξYQ(g′′1 )

Q(s′0) TSQ(s)

Q(g0) Q(g′0) ξY0
Q(g′′0 )

(Here, the right rectangle commutes, since ξY0
Q(g′′0 )Q(s′0) = ξY0

Q(g′′0 s
′
0) = ξY0

(Q(T (s)g′′1 )) =
ξY0

QT (s)Q(g′′1 ) = TSQ(s)ξYQ(g′′1 ) by naturality of ξ.)
Note that h = Q(s0t)

−1Q(h0), where h0 := g0f0. Hence, embedding h0 in a distinguished
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triangle X0
h0−→ Z0

h′0−→ Y ′0
h′′0−−→ T (X0), we obtain an isomorphism of triangles

Q(X) Q(Z) Q(Y ′0) TSQ(X)

Q(X0) Q(Z0) Q(Y ′0) TSQ(X0).

h

Q(s0t)

Q(h′0s0t) ξXQ(h′′0 )

Q(h0) Q(h′0) ξX0
Q(h′′0 )

Applying (T3) for C to the morphisms X0
f0−→ Y0 and Y0

g0−→ Z0, we obtain a distinguished triangle

Z ′0
u0−→ Y ′0

v0−→ X ′0
T (f ′0)g′′0−−−−−→ T (Z ′0)

in C such that the following diagram commutes:

Z ′0 T (X0)

Y0 Y ′0 T (Y0)

X0 Z0 X ′0 T (Y/X).

f ′′0

u0 T (f0)f ′0

g0

h′′0

v0 T (f ′)f0

h0

h′0

g′0

g′′0

T (f ′0)g′′0

Now, put u := Q(u0) : Q(Z ′0) → Q(Y ′0) and v := Q(s′0)−1Q(v0) : Q(Y ′0) → Q(X ′1), so that we have
an isomorphism of triangles

Q(Z ′0) Q(Y ′0) Q(X ′1) TSQ(Z ′0)

Q(Z ′0) Q(Y ′0) Q(X ′0) TSQ(Z ′0),

u v TSQ(f ′0s)◦ξYQ(g′′1 )

Q(s′0)

Q(u0) Q(v0) TSQ(f ′0)◦ξY0
Q(g′′0 )

where the bottom triangle is distinguished by construction. We put

f ′ := Q(f ′0s), f ′′ := ξXQ(f ′′0 ),

g′ := Q(g′1t), g′′ := ξYQ(g′′1 ),

h′ := Q(h′0s0t), h′′ := ξXQ(h′′0)
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in order to simplify the notation. We then have to show that the following diagram commutes:

Q(Z ′0) TSQ(X)

Q(Y ) Q(Y ′0) TSQ(Y )

Q(X) Q(Z) Q(X ′1) TSQ(Z ′0).

f ′′

u TS(f)f ′

g

h′′

v TS(f ′)f

h

h′

g′

g′′

TS(f ′)g′′

To this end, we compute

uf ′ = Q(u0f
′
0s) = Q(h′0g0s) = Q(h′0s0g1) = Q(h′0s0t) ◦Q(t)−1Q(g1) = h′g,

h′′u = ξXQ(h′′0u0) = ξXQ(f ′′0 ) = f ′′,

vh′ = Q(s′0)−1Q(v0h
′
0s0t) = Q(s′0)−1Q(g′0s0t) = Q(s′0)−1Q(s′0g

′
1t) = Q(g′1t) = g′,

TS(f)h′′ = TSQ(s)−1TSQ(f0) ◦ ξXQ(h′′0) = ξYQT (s)−1Q
(
T (f0)h′′0

)
= ξYQT (s)−1Q(g′′0 v0) = ξYQ(g′′1 )Q(s′0)−1Q(v0) = g′′v.

Hence CS satisfies the axiom (T3). This finishes the proof that CS is triangulated and that Q is
exact. The uniqueness assertions are obvious from the construction.

Finally, we prove (iii). Let (D, TD) be a triangulated category. By (ii) the functor (Q, ξ) is exact,
hence by Exercise 6.2 we obtain a functor

Q∗ : Fun4(CS ,D) −→ Fun4(C,D).

To finish the proof, we need to show the following claims:

(a) An exact functor F : C → D lies in the essential image of Q∗ if and only if F inverts S.

(b) The map HomFun4(CS ,D)(F ,G)→ HomFun4(C,D)(FQ,GQ), µ 7→ µQ is bijective for all exact
functors F ,G ∈ Fun4(CS ,D).

It is clear that every functor in the essential image of Q∗ inverts S. So let (F, ζ) : (C, T )→ (D, TD)
be an exact functor which inverts S. By the universal property of Q there exists a unique (up to
unique isomorphism) pair (F , µ) consisting of a functor F : CS → D and a natural isomorphism
µ : F ∼−→ F ◦ Q. Define a natural isomorphism ζ

′
: FTSQ

∼−→ TDFQ by the commutativity of the
following diagram:

(11.3)
FT TDF

FQT FTSQ TDFQ.

µT ∼

ζ

∼

TDµ∼

Fξ

∼
ζ
′
∼
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Since the map Q∗ : Hom(FTS , SF ) ∼−→ Hom(FTSQ,TDFQ) is bijective, we find a unique natural
isomorphism ζ : FTS

∼−→ TDF such that ζ
′

= ζQ. Using (11.3), it is now trivial to check that (F , ζ)
preserves distinguished triangles. This shows (a).

We finally prove (b). Let (F , ζ), (G, θ) : CS → D be exact functors. Note that we have a
commutative diagram

(11.4)

HomFun4(CS ,D)(F ,G) HomFun4(C,D)(FQ,GQ)

HomFun(CS ,D)(F ,G) HomFun(C,D)(FQ,GQ),∼

hence the top arrow is injective. Let now µ : F → G be a natural transformation such that µQ is
exact. Consider the following diagram of natural isomorphisms:

FQT FTSQ TDFQ

GQT GTSQ TDGQ.

µQT

Fξ

µTSQ

ζQ

TDµQ

Gξ θQ

Here, the outher rectangle commutes by assumption and the left square commutes by naturality.
Hence, the right square commutes. Since the bottom map in (11.4) is bijective, we deduce that
TDµ ◦ ζ = θ ◦ µTS . Hence µ is exact.

Theorem 11.3. Let (C, T ) be a triangulated category and N ⊆ C a triangulated subcategory (Def-
inition 6.6). Let SN be the class of morphisms f : X → Y in C such that for every distinguished
triangle X f−→ Y → N → T (X) we have N ∈ N .

Then:

(i) SN is a left and right multiplicative system compatible with the triangulation.

(ii) For an exact functor F : C → D between triangulated categories we have F (N ) = 0 if and only
if F inverts the morphisms in SN .

(iii) Precomposition with the localization functor

Q : C −→ C/N := CSN

induces a fully faithful embedding Fun4(C/N ,D) ↪→ Fun4(C,D) with essential image consist-
ing of those exact functors F : C → D satisfying F (N ) = 0.

In other words, the following universal property is satisfied: For every exact functor F : C → D
such that F (N ) = 0, there exists a pair (F , µ) consisting of an exact functor F : C/N → D
and an exact natural isomorphism µ : F ∼−→ F ◦Q; for any other such pair (F

′
, µ′), there exists

a unique exact natural isomorphism θ : F ∼−→ F
′
such that µ′ = θQ ◦ µ.

Proof. We first prove (i). Since 0 ∈ N , Proposition 5.3(i) shows that SN contains all isomorphisms,
so that (S1) is satisfied.



§11. Localization of triangulated categories 67

Let f : X → Y and g : Y → Z be two morphisms in SN . Embed f , g and g ◦f into distinguished
triangles X f−→ Y → Z ′ → T (X), Y g−→ Z → X ′ → T (Y ) and X g◦f−−→ Z → Y ′ → T (X), respectively.
Then the octahedral axiom provides a distinguished triangle Z ′ → Y ′ → X ′ → T (X ′). Now
f, g ∈ SN implies Z ′, X ′ ∈ N . Since N is triangulated, we deduce Y ′ ∈ N , but this means
g ◦ f ∈ SN verifying (S2).

We now verify (S3), so let Y f←− X s−→ X ′ with s ∈ SN . By (T1) and Proposition 4.10 we have a

distinguished triangle X ′′ s
′′

−→ X
s−→ X ′

s′−→ T (X ′′), where X ′′ ∈ N since s ∈ SN . Complete fs′′ to
a distinguished triangle (fs′′, t, h) and consider the commutative diagram with solid arrows

X ′′ X X ′ T (X ′′)

X ′′ Y Z T (X ′′).

s′′

f

s s′

g

fs′′ t h

By Proposition 4.4 we find g making the whole diagram commute. Now X ′′ ∈ N implies t ∈ SN ,
which shows that (S3) is satisfied.

In order to verify (S4), let f, g : X ⇒ Y be two morphisms in C and s : X ′ → X in SN such
that f ◦ s = g ◦ s. Put h := f − g, so that h ◦ s = 0. We need to find t ∈ SN with t ◦ h = 0. By
(T1) we may embed s in a distinguished triangle X ′ s−→ X

s′−→ X ′′ → T (X ′). Since HomC(−, Y ) is
cohomological by Proposition 4.7, we obtain an exact sequence

HomC(X
′′, Y )

s′∗−−→ HomC(X,Y )
s∗−→HomC(X

′, Y ).

Since s∗(h) = h ◦ s = 0, we find h′ ∈ HomC(X
′′, Y ) with h′ ◦ s′ = s′∗(h′) = h. By (T1) we may

complete h′ to a distinguished triangle X ′′ h′−→ Y
t−→ Z → T (X ′′) with t ∈ SN because X ′′ ∈ N .

By Proposition 4.7(i) we have t ◦ h′ = 0 and hence t ◦ h = t ◦ h′ ◦ s′ = 0, which shows that (S4) is
satisfied.

Axiom (S5) is immediate from the fact that N is a triangulated subcategory.

Finally, let us check axiom (S6). Consider a commutative diagram with solid arrows

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′),

f

s

g

t

h

u T (s)

f ′ g′ h′
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where s, t ∈ SN . Then by Lemma 4.13 we can complete the diagram to a commutative diagram

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

X ′′ Y ′′ Z ′′ T (X ′′)

T (X) T (Y ) T (Z) T 2(X),

s

f

t

g

u

h

T (s)

s′

f ′

t′

g′

u′

h′

T (s′)

s′′

f ′′

t′′

g′′

u′′

h′′

T (s′′)

T (f) T (g) T (h)

where, in particular, the third row and column are distinguished triangles. Since s, t ∈ SN , we have
X ′′, Y ′′ ∈ N . As N is triangulated, we deduce Z ′′ ∈ N and hence u ∈ SN . Hence, axiom (S6) is
satisfied. We conclude that SN is a left multiplicative system compatible with the triangulation.
Since N op ⊆ Cop is a triangulated subcategory, we deduce also that SN is right multiplicative.

We next prove (ii), so let F : C → D be an exact functor between triangulated categories. Then
for each distinguished triangle X u−→ Y

v−→ Z
w−→ T (X) in C the triangle

F (X)
F (u)−−−→ F (Y )

F (v)−−−→ F (Z) −→ TF (X)

is distinguished. Now we have

u ∈ SN ⇐⇒ Z ∈ N , and
F (u) is invertible ⇐⇒ F (Z) = 0 (by Proposition 5.3),

from which the claim is obvious.
Finally, (iii) is a reformulation of Theorem 11.2(iii) using (ii).

Remark 11.4. Let (C, T ) be a triangulated category.

(i) For any exact functor F : C → D we denote by Ker(F ) ⊆ C the full subcategory spanned by
the objects X with F (X) = 0. Then Ker(F ) is a thick triangulated subcategory.

(ii) Let N ⊆ C be a triangulated subcategory and denote by Q : C → C/N the associated localiza-
tion functor. Then Ker(Q) is the thick closure of N .

Proof. For part (i), note that F is additive by Lemma 6.3. Hence if X,Y ∈ C with X⊕Y ∈ Ker(F ),
then F (X)⊕ F (Y ) = F (X ⊕ Y ) = 0. We deduce that F (X) = F (Y ) = 0, because the composite

F (X)
F (iX)−−−−→ F (X ⊕ Y )

F (pX)−−−−→ F (X) is both zero and the identity.
Let us prove (ii). We already know that Ker(Q) is a thick triangulated subcategory containing

N . In order to show that Ker(Q) is contained in the thick closure of N , let X ∈ Ker(Q). We
need to find Y ∈ C such that X ⊕ Y ∈ N . Note that Q(X → 0) is an isomorphism in C/N . By
Corollary 10.6(iii) we find Y ∈ C such that X 0−→ T (Y ) lies in SN ; in particular, Y ∈ Ker(Q). But
note that we have a distinguished triangle Y → X ⊕ Y → X

0−→ T (Y ) by Proposition 5.3(ii). We
thus deduce X ⊕ Y ∈ N as desired.
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Exercise 11.5. Let (C, T ) be a triangulated category and let N ,D ⊆ C be triangulated subcategories.
Suppose that one of the following conditions is satisfied:

(a) Every map N → D with N ∈ N and D ∈ D factors through an object of N ∩D.
(b) Every map D → N with N ∈ N and D ∈ D factors through an object of N ∩D.

Show that the induced functor D/N ∩D ↪→ C/N is fully faithful.





Chapter 4

The Derived Category and Derived Functors

§12. The derived category

Let us come back to the derived category. Recall from Example 8.5 that for an abelian category A
we defined the derived category as

D(A) := C(A)[qis−1],

where qis denotes the class of quasi-isomorphisms in C(A) (cf. Definition 3.8). We similarly defined
the bounded versions D+(A), D−(A) and Db(A). We now want to put a triangulated structure on
D(A) using the machinery developed in the previous section.

Lemma 12.1. Let A be an abelian category. The localization Q : C(A) → D(A) factors through
K(A).

Proof. It suffices to prove the following statement: If f : X → Y is a morphism in C(A) which is

null homotopic, then Q(f) = 0. By Exercise 2.14(c), f factors as X ιX−−→ Mc(idX)
(s,f)−−−→ Y , where

s is a null homotopy for f . By Proposition 2.13(i), the complex Mc(idX) is acyclic, that is, the
map Mc(idX)→ 0 is a quasi-isomorphism. We deduce that Q(f) factors through Q(Mc(idX)) ∼= 0,
hence is zero.

Lemma 12.2. Let (C, T ) be a triangulated category, A an abelian category, and H : C → A a
cohomological functor. Let:

• S be the class of morphisms f in C such that H(T i(f)) is an isomorphism for all i ∈ Z.

• N ⊆ C be the full subcategory spanned by those objects N with H(T i(N)) = 0 for all i ∈ Z.

Then:

(i) N is a triangulated subcategory of C.

(ii) S = SN . In other words: If f : X → Y is a morphism in C and X f−→ Y → N → T (X) is a
distinguished triangle, then f lies in S if and only if N lies in N .

(iii) S is a left and right multiplicative system which is compatible with the triangulation.

71
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Proof. From the long exact sequence

· · · −→ H(T i(X))
H(T i(f))−−−−−−→ H(T i(Y )) −→ H(T i(N)) −→ H(T i+1(X)) −→ · · ·

associated with a distinguished triangle X f−→ Y → N → T (X) we make the following observations:

(a) If X,Y ∈ N , then N ∈ N .

(b) f ∈ S if and only if N ∈ N .

Now, (i) follows from (a), (ii) follows from (b), and (iii) follows from (i), (ii) and Theorem 11.3(i).

Proposition 12.3. Let A be an abelian category.

(i) qis is a left and right multiplicative system in K(A) compatible with the triangulation.

(ii) K(A)[qis−1] is a triangulated category.

(iii) The induced functor D(A) ∼−→ K(A)[qis−1] is an equivalence of categories. In particular, D(A)
is a triangulated category, where the distinguished triangles are those which are isomorphic to
X

f−→ Y → Mc(f)→ X[1] for some morphism of complexes f : X → Y .

(iv) We have D(A) = K(A)/K(A)acyc, where K(A)acyc denotes the full subcategory of K(A) spanned
by the acyclic complexes.

Similar statements hold for D+(A), D−(A) and Db(A).

Proof. Part (i) follows from Lemma 12.2 by observing that qis = SK(A)acyc
. Hence, (ii) follows

from Theorem 11.2. Given (iii), part (iv) is a consequence of Theorem 11.3 using qis = SK(A)acyc

by Lemma 12.2. It remains to prove (iii). Note first that Lemma 12.1 provides a factorization
C(A)→ K(A)→ D(A). Given any category E , we get a commutative diagram

Fun(D(A), E) Fun(K(A), E)

Fun(C(A), E).

It is easy to see that the right vertical functor is fully faithful. Hence the horizontal functor is
fully faithful, and the essential image consists of those functors which invert quasi-isomorphisms.
Hence the functor K(A) → D(A) exhibits D(A) as the localization of K(A) with respect to the
quasi-isomorphisms.

Example 12.4. Let A be an abelian category and let 0→ A
f−→ B

g−→ C → 0 a short exact sequence
of complexes. Then there exists a morphism d : C → A[1] in D(A) such that

A
f−→ B

g−→ C
d−→ A[1]

is a distinguished triangle in D(A). Observe that g factors as a composition B
(0,id)−−−→ Mc(f)

(0,g)−−−→ C
as g ◦ f = 0. Now, from the long exact sequence in cohomology and the five lemma it follows that
(0, g) is a quasi-isomorphism. This implies the claim.
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Remark 12.5. For morphisms f, g : X ⇒ Y of complexes we have the following strict implications:

f = g in C(A) =⇒ f = g in K(A),

=⇒ f = g in D(A),

=⇒ Hi(f) = Hi(g) for all i ∈ Z.

To see the strictness, we consider the following counter-examples:

(1) Let X ∈ C(A) be a non-zero complex. The identity on Mc(idX) is not zero in C(A) but
becomes zero in K(A) by Proposition 2.13(i).

(2) Consider the complex X = [0→ Z 2−→ Z→ Z/2→ 0] in K(A). Since X is acyclic, the identity
on X is zero in D(A); but it is non-zero in K(A): If X were contractible, there would exist
the dashed maps in the diagram

0 Z Z Z/2 0

0 Z Z Z/2 0

2

s

π

t

2 π

such that 2s(1) = s(2) = 1, 2s+ tπ = idZ and πt = idZ/2; but this is absurd.

(3) Consider the complexes [0→ Z 2−→ Z→ 0] and Z[1] in C(Ab). The map f of complexes

0 Z Z 0

0 Z 0 0

2

is clearly zero on cohomology, but it is non-zero in D(Ab): otherwise, by Corollary 10.6(ii),
there would exist a quasi-isomorphism s : Z[1]→ Y of complexes such that the composite s◦f
is zero in C(Ab); but this contradicts the fact that s−1 ◦ f−1 = s−1 6= 0 (because H−1(s) 6= 0).

This example generalizes: We will see later (in Theorem 16.7) that for all X,Y ∈ A and n ∈ Z
we have HomD(A)(X,Y [n]) = ExtnA(X,Y ).

Definition 12.6. Let A be an abelian category and X ∈ C(A) be a complex. We define the
truncated complexes

τ≤nX := [· · · → Xn−2 dn−2

−−−→ Xn−1 → Ker(dn)→ 0→ · · · ],

τ≥nX := [· · · → 0→ Coker(dn−1)→ Xn+1 dn+1

−−−→ Xn+2 → · · · ],
τ̃≤nX := [· · · → Xn−1 → Xn → Im(dn)→ 0→ · · · ],
τ̃≥nX := [· · · → 0→ Im(dn−1)→ Xn → Xn+1 → · · · ],
σ≥nX := [· · · → 0→ Xn → Xn+1 → · · · ],
σ≤nX := [· · · → Xn−1 → Xn → 0→ · · · ].

The following obvious properties are satisfied:
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(a) τ≤nτ≥nX ∼= Hn(X)[−n] for all n ∈ Z;
(b) We have canonical morphisms σ≥n−1X → X → τ̃≥nX → τ≥nX; the first two maps are

quasi-isomorphisms in degrees ≥ n and the third is a quasi-isomorphism.

Similarly, we have canonical morphisms τ≤nX → τ̃≤nX → X → σ≤n+1X, where the first
map is a quasi-isomorphism and the last two maps are quasi-isomorphisms in degrees ≤ n.

(c) We have canonical short exact sequences

0→ τ≤nX → X → τ̃≥n+1X → 0,

0→ τ̃≤nX → X → τ≥n+1X → 0,

0→ σ≥nX → X → σ≤n−1X → 0.

By Example 12.4 these induce distinguished triangles in D(A):

τ≤nX → X → τ≥n+1X → τ≤nX[1],

σ≥nX → X → σ≤n−1X → σ≥nX[1].

Proposition 12.7. Let A be an abelian category. The functor

A −→ D(A), A 7−→ A[0],

is fully faithful. The essential image consists of those complexes X such that Hi(X) = 0 for all
i 6= 0.

Proof. Let A,B ∈ A. Injectivity of the map HomA(A,B) → HomD(A)(A[0], B[0]) follows from
Corollary 10.6(ii): If f : A[0] → B[0] is the zero map, then there exists a quasi-isomorphism
s : B[0]→ X• such that s ◦ f = 0 in C(A). But then H0(s ◦ f) = H0(s) ◦ f : A→ H0(X) is zero. As
H0(s) is an isomorphism, we deduce f = 0.

To prove surjectivity, consider a morphism A[0]→ B[0] in D(A) represented by a roof A[0]
f−→

X
s←− B[0], where s is a quasi-isomorphism of complexes. We have a commutative diagram

X

A τ≥0X B,

H0(X),

f

H0(f) ∼=

s

where the maps X → τ≥0X ← H0(X) are quasi-isomorphisms. This shows that every map
A[0]→ B[0] is represented by a morphism in A.

Lemma 12.8. Let A be an abelian category. For ∗ ∈ {+,−, b} the canonical functor D∗(A) ↪→ D(A)
is fully faithful and we have D+(A) ∩ D−(A) = Db(A) inside D(A).

Moreover, the essential image of D+(A) (resp. D−(A)) in D(A) consists of those objects X with
Hi(X) = 0 for i� 0 (resp. i� 0).
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Proof. Observe that the obvious functor K∗(A) ↪→ K(A)→ D(A) inverts quasi-isomorphisms and
hence induces a well-defined functor D∗(A)→ D(A). In order to check fully faithfulness, we use the
criterion in Proposition 10.8 (and its dual).

If ∗ = +, it remains to show that for every quasi-isomorphism s : X → X ′ in K(A) with
X ∈ K+(A), there exists a map g : X ′ → Y of complexes with Y ∈ K+(A) such that g ◦ s is a
quasi-isomorphism. We fix n ∈ Z such that Hi(X) = 0 for all i < n. Since s is a quasi-isomorphism,
we also have Hi(X ′) = 0 for all i < n. The obvious map g : X ′ → τ≥nX ′ is a quasi-isomorphism,
hence so is g ◦ s. We deduce that D+(A) ↪→ D(A) is fully faithful and the essential image consists of
those complexes X with Hi(X) = 0 for all i� 0. The same argument shows that Db(A) ↪→ D−(A)
is fully faithful.

If ∗ = −, then we need to show that for every quasi-isomorphism s : Y ′ → Y with Y ∈ K−(A)
there exists g : X → Y ′ with X ∈ K−(A) such that s ◦ g is a quasi-isomorphism. Fix n ∈ Z such
that Hi(Y ) = 0 for all i > n. Then the obvious map g : τ≤nY ′ → Y ′ is a quasi-isomorphism, hence
so is s ◦ g. Therefore, the functor D−(A) ↪→ D(A) is fully faithful for ∗ ∈ {−,+}. The remaining
assertions are clear.

Lemma 12.9. Let F : A → B be an additive functor between abelian categories. The following
statements are equivalent:

(a) F is exact.

(b) If X ∈ C(A) is an acyclic complex, then F (X) is acyclic.

(c) If f : X → Y is a quasi-isomorphism in K(A), then K(F )(f) is a quasi-isomorphism in K(B).

If these conditions are satisfied, then F induces an exact functor D(F ) : D(A)→ D(B).

Proof. The equivalence of (a) and (b) is immediate from the definition. We now prove the equivalence
of (b) and (c). Let f : X → Y be a morphism of complexes. Note that K(F ) is exact by Example 6.4.
The claim now follows from the observation that f is a quasi-isomorphism if and only if Mc(f) is
acyclic Lemma 12.2(iv). The final claim follows from (c) and the universal property of D(A).

We will next discuss a generalization of Lemma 12.9 to general additive functors F : A → B.
Concretely, we have a diagram with solid arrows

K(A) K(B)

D(A) D(B).

QA

K(F )

QB

It is generally not true that QB ◦K(F ) inverts quasi-isomorphisms, in which case there is no dashed
arrow making the whole diagram commute. However, in good situations there exists a universal
functor RF : D(A)→ D(B), called the right derived functor of F , which “approximately” makes the
diagram commutative. We will study this phenomenon in greater generality in the next section.
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§13. Kan extensions

Definition 13.1. Let ϕ : C → D be a functor and E a category. Consider the induced functor

ϕ∗ : Fun(D, E) −→ Fun(C, E),

G 7−→ ϕ∗(G) := G ◦ ϕ.

Let F : C → E be a functor.

(a) We say that F admits a left Kan extension along ϕ if the following equivalent definitions are
satisfied:

• ϕ∗ admits a (partial) left adjoint at F .
• there exists a pair (F , η) consisting of a functor F : D → E and a natural transformation
η : F → F ◦ ϕ such that the composite

HomFun(D,E)(F ,G)
ϕ−→ HomFun(C,E)(F ◦ ϕ,G ◦ ϕ)

η∗−→ HomFun(C,E)(F,G ◦ ϕ)

is bijective for all G ∈ Fun(D, E).
In other words, for all functors G : D → E and all natural transformations ν : F → G ◦ϕ,
there exists a unique natural transformation α : F → G such that ν = αϕ ◦ η:

C E

D
ϕ

F

F

G

η
∃!α

In this case, we write ϕ!F := F and call it the left Kan extension of F along ϕ.
(b) We say that a functor H : E → F preserves the left Kan extension of F : C → E along ϕ if the

natural transformation Hη : H ◦ F → H ◦ ϕ!F ◦ ϕ exhibits H ◦ ϕ!F as the left Kan extension
of H ◦ F along ϕ; in other words, the induced natural transformation ϕ!(H ◦ F ) ∼−→ H ◦ ϕ!F
is an isomorphism.

We similarly say that F admits a right Kan extension along ϕ if there exists a functor F : D → E
and a natural transformation ε : F ◦ ϕ→ F such that the composite

HomFun(D,E)(G,F )
ϕ−→ HomFun(C,E)(G ◦ ϕ, F ◦ ϕ)

ε∗−→ HomFun(C,E)(G ◦ ϕ, F )

is bijective for all G ∈ Fun(D, E). In this case, we write ϕ∗F := F . A functor H : E → F preserves
the right Kan extension of F along ϕ if Hε : H ◦ ϕ∗F ◦ ϕ → H ◦ F exhibits H ◦ ϕ∗F as the right
Kan extension of H ◦ F along ϕ.

Remark 13.2. It follows from the definition of Kan extensions that, if α : F1 → F2 is a natural
transformation of functors C → E which admit a left Kan extension along ϕ : C → D, then there is
a unique natural map ϕ!α : ϕ!F1 → ϕ!F2 making the diagram

F1 F2

ϕ!F1 ◦ ϕ ϕ!F2 ◦ ϕ

η1

α

η2

ϕ!α◦ϕ
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commute. It follows easily that ϕ! is functorial. Similarly, ϕ∗ is functorial.

Example 13.3. A left Kan extension of a functor F : C → D along C → ∗ is a pair (colimF, η)
consisting of a colimit of F together with the universal cocone η : F → constcolimF . Similarly, a
right Kan extension along C → ∗ is a limit.

Exercise 13.4. Let F : C → D be a functor and c ∈ C. Compute the left Kan extension of
HomC(c,−) : C → Set along F .

Exercise 13.5. Let F : C → E be a functor. Show that the assignment ϕ 7→ ϕ!F is contravariantly
functorial in those ϕ along which F admits a left Kan extension.

We have the following generalization of the fact that left adjoints preserve colimits:

Lemma 13.6. Left adjoints preserve left Kan extensions. Right adjoints preserve right Kan exten-
sions.

Proof. We only prove the statement for left adjoints. Consider a diagram

C E F

D

ϕ

F L

ϕ!F

of functors, where L admits a right adjoint R : F → E . For every functor G : D → F we compute

Hom(Lϕ!F,G) ∼= Hom(ϕ!F,RG) ∼= Hom(F,RGϕ) ∼= Hom(LF,Gϕ).

Definition 13.7. Let ϕ : C → D and F : D → E be functors and suppose that the left Kan extension
ϕ!F : D → E of F along ϕ exists.

(a) We say that ϕ!F is absolute if it is preserved by every functor H : E → F .
(b) We say that ϕ!F is pointwise if it is preserved by the functors HomE(−, e) : E → Setop for all

e ∈ E .

Similarly, a right Kan extension is called absolute if it is preserved by every functor, and is called
pointwise if it is preserved by the functors HomE(e,−) : E → Set for all e ∈ E .

We have already seen in Section §8 a special type of absolute Kan extension along a localization
functor. More precisely, we have:

Lemma 13.8. Let Q : C → C[S−1] be a localization functor and F : C → D be any functor. The
following statements are equivalent:

(a) The functor F sends morphisms in S to isomorphisms in D.
(b) There exists a functor F : C[S−1]→ D and a natural isomorphism η : F ∼−→ FQ, and any such

pair (F , η) is an absolute left Kan extension of F along Q.

(c) There exists a functor F : C[S−1]→ D and a natural isomorphism ε : FQ ∼−→ F , and any such
pair (F , ε) is an absolute right Kan extension of F along Q.
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Proof. We only prove the equivalence of (a) and (b). The equivalence of (a) and (c) is simi-
lar. The implication “(b) =⇒ (a)” is obvious. Conversely, suppose that F inverts S. Since
Q∗ : Fun(C[S−1],D) ↪→ Fun(C,D) is fully faithful and F lies in the essential image, there exists
a natural isomorphism η : F ∼−→ FQ. Now, for all functors H : D → E and G : C[S−1] → E , the
composite

HomFun(C[S−1],E)(HF,G)
Q∗−−→
∼

HomFun(C,E)(HFQ,GQ)
η∗−→
∼

HomFun(C,E)(HF,GQ)

is an isomorphism, which shows that Hη exhibits HF as a left Kan extension of HF along Q.
Hence, F is absolute.

Proposition 13.9. Let Q : C → C[S−1] be a localization functor. An object Y ∈ C is called S-local
if for all morphisms s : X → X ′ in S the induced map HomC(X

′, Y ) ∼−→ HomC(X,Y ) is bijective.
Suppose that the following condition is satisfied:

(∗) For every X ∈ C there exists a map f : X → Y such that Y is S-local and Q(f) is invertible
in C[S−1].

Then:

(i) If Y ∈ C is S-local, then for all X ∈ C the map

HomC(X,Y ) ∼−→ HomC[S−1](Q(X), Q(Y ))

induced by Q is bijective.

(ii) Q is a Bousfield localization. More precisely, Q admits a fully faithful right adjoint C[S−1] ↪→ C
whose essential image is spanned by the S-local objects.

Proof. We first prove (i). Note that also Qop : Cop → C[S−1]op is a localization functor. For every
functor G : C[S−1]op → Set the Yoneda lemma provides isomorphisms

HomFun(Cop,Set)

(
HomC(−, Y ), GQ

)
= GQ(Y ) = HomFun(C[S−1]op,Set)

(
HomC[S−1](−, Q(Y )), G

)
,

which shows that η : HomC(−, Y ) → HomC[S−1](Q(−), Q(Y )) exhibits HomC[S−1](−, Q(Y )) as the
left Kan extension of HomC(−, Y ) along Qop. But HomC(−, Y ) inverts the morphisms in S and
hence Lemma 13.8 shows that η is an isomorphism.

For part (ii), let Cloc ⊆ C be the full subcategory spanned by the S-local objects. Then (i) shows
that the restriction

Q
∣∣
Cloc : Cloc ↪−→ C[S−1]

is fully faithful. By (∗), it is also essentially surjective, hence an equivalence of categories. Now the
composite C[S−1] ∼−→ Cloc ⊆ C defines a fully faithful right adjoint of Q.

The following result gives a powerful criterion for the existence of absolute Kan extensions:

Proposition 13.10. Let ϕ : C � D :ψ be an adjunction and denote by η : idC → ψϕ and ε : ϕψ →
idD the unit and counit, respectively.
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(i) For every functor F : C → E, the natural transformation Fη : F → Fψ ◦ ϕ exhibits Fψ as the
left Kan extension of F along ϕ. Moreover, ϕ!F = Fψ is absolute and in particular pointwise.

(ii) For every functor G : D → E, the natural transformation Gε : Gϕ ◦ ψ → G exhibits Gϕ as
the right Kan extension of G along ψ. Moreover, ψ∗G = Gϕ is absolute and in particular
pointwise.

Proof. We only prove (i), because the other statement is analogous. The adjunction ϕ a ψ induces
an adjunction

ψ∗ : Fun(C, E)� Fun(D, E) :ϕ∗.

Indeed, the natural transformations η∗F : F
Fη−−→ Fψϕ = ϕ∗ψ∗(F ) (where F ∈ Fun(C, E)) and

ε∗G : ψ∗ϕ∗(G) = Gϕψ
Gε−−→ G (where G ∈ Fun(D, E)) clearly satisfy the triangle identities.

For every functor H : E → F the diagram

Fun(C, E) Fun(D, E)

Fun(C,F) Fun(D,F)

ψ∗

H∗

ϕ∗

H∗
ψ∗

ϕ∗

is commutative. This implies that the Kan extensions are absolute.

Corollary 13.11. Let ϕ : C ∼−→ D be an equivalence of categories. Then every functor F : C → E
admits an (absolute) left (resp. right) Kan extension along ϕ given by ϕ!F = Fϕ−1 (resp. ϕ∗F =
Fϕ−1).

Proof. Note that ϕ−1 is left and right adjoint to ϕ (by Observation 7.1 and its dual). Hence the
claim follows from Proposition 13.10.

Exercise 13.12. Show that a functor F : C → D admits a right adjoint if and only if the left Kan
extension F!(idC) : D → C exists and is absolute.

It turns out that the only Kan extensions of interest are the pointwise ones. The next result
shows that there is an explicit formula to compute pointwise Kan extensions and that every Kan
extension is pointwise if E admits enough (co)limits.

As a preparation we recall the following simple lemma:

Lemma 13.13. Let C be a category and F ∈ P(C) := Fun(Cop,Set) a presheaf. We denote by

C/F := C ×P(C) P(C)/F

the category of pairs (c, x), where c ∈ C and x ∈ F (c) (equivalently, x corresponds to a map
τc,x : Hom(−, c)→ F by the Yoneda lemma).

Then the canonical map

colim
(c,f)∈C/F

HomC(−, c) ∼−→ F

is an isomorphism.
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Similarly, for every F ∈ Fun(C,Set) the canonical map

colim
(c,f)∈(C/F )op

HomC(c,−) ∼−→ F

is an isomorphism.

Proof. The second claim follows from the first by replacing C by Cop and observing that Cop
/F = (CF )op.

A morphism (c, x)→ (c′, x′) in C/F is a map h : c→ c′ making the diagram

HomC(−, c)

F

HomC(−, c′)

τc,x

h∗

τc′,x′

commute. Hence the map in question is well-defined. It remains to see that for each A ∈ C the map

colim
(c,x)∈C/F

HomC(A, c)→ F (A), g 7→ τc,x(g) = F (g)(x).

is bijective.
Observe that τA,x(idA) = x for every x ∈ F (A). Hence surjectivity is clear. For injectivity,

let gi ∈ HomC(A, ci) for i = 1, 2 (viewed as an element of the colimit at (ci, xi) ∈ C/F ), such
that the images of g1 and g2 in F (A) agree, i.e., τc1,x1(g1) = τc2,x2(g2) =: y. We have morphisms
gi : (A, y) → (ci, xi) in C/F , and hence [g1, (c1, x1)] = [idA, (A, y)] = [g2, (c2, x2)] in the colimit as
desired.

Proposition 13.14. Let ϕ : C → D and F : C → E be functors.

(i) The left Kan extension ϕ!F : D → E of F along ϕ exists and is pointwise if and only if for all
d ∈ D the colimit of ϕ/d s−→ C F−→ E exists. In this case, the natural map

colim
(
ϕ/d

s−→ C F−→ E
) ∼−→ ϕ!F (d)

is an isomorphism for all d ∈ D.
(ii) The right Kan extension ϕ∗F : D → E of F along ϕ exists and is pointwise if and only if for

all d ∈ D the limit of d/ϕ t−→ C F−→ E exists. In this case, the natural map

ϕ∗F (d) ∼−→ lim
(
d/ϕ

t−→ C F−→ E
)

is an isomorphism.

Proof. We only prove (ii). Statement (i) then follows by passing to opposite categories everywhere
(and using Fun(Cop,Dop) = Fun(C,D)op).

Fix d ∈ D. The category d/ϕ := Dd/ ×D C is the category with objects the pairs (c, f), where
c ∈ C and f : d→ ϕ(c) is a morphism in D; a morphism (c, f)→ (c′, f ′) consists of a map g : c→ c′

in C such that f ′ = ϕ(g) ◦ f . The functor t : d/ϕ→ C is given by t(c, f) := c.
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Observe that d/ϕ = C/Hom(d,ϕ(−)) canonically. Lemma 13.13 shows that the natural transforma-
tion

colim
(c,f)∈(d/ϕ)op

HomC(c,−) ∼−→ HomD(d, ϕ(−))(13.1)

of functors C → Set is an isomorphism.
Suppose first that the right Kan extension (ϕ∗F, (ϕ∗F )ϕ

ε−→ F ) exists. For every e ∈ E we
compute

HomE(e, ϕ∗F (d)) ∼= HomFun(D,Set)
(
HomD(d,−),HomE(e, ϕ∗F (−))

)
(Yoneda)

→ HomFun(C,Set)
(
HomD(d, ϕ(−)),HomE(e, F (−))

)
∼= HomFun(C,Set)

(
colim

(c,f)∈(d/ϕ)op
HomC(c,−),HomE(e, F (−))

)
(by (13.1))

∼= lim
(c,f)∈d/ϕ

HomFun(C,Set)
(
HomC(c,−),HomE(e, F (−))

)
∼= lim

(c,f)∈d/ϕ
HomE(e, F (c)) (Yoneda)

∼= HomE

(
e, lim

(c,f)∈d/ϕ
F (c)

)
.

Again by the Yoneda lemma, we obtain a map ϕ∗F (d) → lim(c,f)∈d/ϕ F (c), and the construction
shows that it is an isomorphism if and only if ϕ∗F is pointwise.

Conversely, suppose that the limit F (d) := lim←−(d/ϕ
t−→ C F−→ E) exists for all d ∈ D. If δ : d→ d′

is a morphism in D, we obtain a functor δ∗ : d′/ϕ→ d/ϕ given by (c′, f ′) 7→ (c′, f ′δ). Observe that
for all e ∈ E and (c′, f ′) ∈ d′/ϕ the diagram

HomE(e, F (d)) HomFun(d/ϕ,Set)

(
conste, F t

)
HomE(e, F (c′))

HomE(e, F (d′)) HomFun(d′/ϕ,Set)

(
conste, F tδ

)
HomE(e, F (c′))

F (δ)∗

pr(c′,f′δ)

δ∗

pr(c′,f′)

commutes. By the Yoneda lemma, we deduce that the left triangle

F (d) F (d) F (c)

F (d′) F (c′) F (c′)

F (δ) pr(c′,f′δ) pr(c,ϕ(h)f)

pr(c,f)

F (h)

pr(c′,f′)

commutes for all δ : d→ d′ and (c′, f ′) ∈ d′/ϕ, whereas the right triangle commutes by the definition
of F as a limit, for all (c, f) ∈ d/ϕ and h : c → c′ in C. In particular, F : D → E defines a functor
and the projection map µc = pr(c,idϕ(c))

: Fϕ(c)→ F (c) is natural in c.
Now, for every functor G : D → E we need to show that the composite

HomFun(D,E)(G,F )
ϕ∗−−→ HomFun(C,E)(Gϕ,Fϕ)

µ∗−→HomFun(C,E)(Gϕ,F )(13.2)

is bijective. We first show injectivity. A natural transformation α : G → F consists of a map
αd,c,f : G(d)→ F (c) for every d ∈ D and (c, f) ∈ d/ϕ satisfying the following conditions:
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(a) for all maps δ : d→ d′ and (c, f ′) ∈ d′/ϕ the diagram

G(d) F (c)

G(d′)

G(δ)

αd,c,f′δ

G(δ) αd′,c,f′

commutes;

(b) for all d ∈ D, all (c, f) ∈ d/ϕ and all maps h : c→ c′ in C the diagram

G(d) F (c)

F (c′)

αd,c,f

αd,c′,ϕ(h)f
F (h)

commutes.

Indeed, the condition (b) shows that the αd,c,f , for varying (c, f), assemble into a map αd : G(d)→
F (d) such that αd,c,f = pr(c,f) ◦αd. Then the condition in (a) shows that the αd are natural in d.

By (a) the diagram

G(d) F (c)

Gϕ(c)

αd,c,f

G(f)
αϕ(c),c,idϕ(c)

commutes for all (c, f) ∈ d/ϕ. Hence, α is determined by (αϕ(c),c,idϕ(c)
)c. By construction, the map

(13.2) sends α to the natural transformation (αϕ(c),c,idϕ(c)
)c, which shows that (13.2) is injective.

We now prove surjectivity: Let β : Gϕ→ F be a natural transformation of functors C → E . For
every d ∈ D and (c, f) ∈ d/ϕ we put

αd,c,f := βc ◦G(f) : G(d)→ F (c).

We need to check conditions (a) and (b). So let δ : d→ d′ be a map in D and (c, f ′) ∈ d′/ϕ. Then
we have a commutative diagram

G(d)

Gϕ(c) F (c)

G(d′)

G(f ′δ)

G(δ)

αd,c,f′δ

βc

G(f ′)

αd′,c,f′



§13. Kan extensions 83

which verifies (a). Finally, let d ∈ D, (c, f) ∈ d/ϕ and h : c→ c′ in C. Then the diagram

G(d) Gϕ(c) F (c)

G(d) Gϕ(c′) F (c′),

G(f)

αd,c,f

βc

Gϕ(h) F (h)

G(ϕ(h)f)

αd,c′,ϕ(h)f

βc′

commutes, which verifies condition (b). It follows that (13.2) is surjective, hence bijective.

Corollary 13.15. Let ϕ : C → D be a functor such that C is small (and D is locally small). Let
E be a complete (resp. cocomplete) category. Then every functor admits a right (resp. left) Kan
extension along ϕ, which is pointwise.

The following result explains why Kan extensions are called “extensions”:

Corollary 13.16. Let ϕ : C ↪→ D be a fully faithful functor. Let F : C → E be a functor and suppose
that the left Kan extension ϕ!F : D → E exists and is pointwise. Then the unit η : F ∼−→ ϕ!F ◦ ϕ is
an isomorphism of functors C → E.

Proof. By Proposition 13.14 we have a canonical isomorphism

ϕ!F (ϕ(c)) ∼= colim
(
ϕ/ϕ(c)

s−→ C F−→ E
)

and ηc : F (c)→ colim(c′,ϕ(c′)→ϕ(c)) F (c′) is given by the canonical map corresponding to the element
(c, idϕ(c)) ∈ ϕ/ϕ(c), which is a terminal object because ϕ is fully faithful. Hence ηc is an isomorphism.

Proposition 13.17. Consider the following diagram of functors

B E

C

D.

ψ

F

ϕ

ψ!F

Suppose that the left Kan extension of F along ψ exists and is exhibited by the natural transformation
η : F → ψ!F ◦ ψ. Then the left Kan extension of ψ!F along ϕ exists if and only if the left Kan
extension of F along ϕψ exists, and in this case the canonical map (ϕψ)!F

∼−→ ϕ!(ψ!F ) is an
isomorphism. More precisely:

(a) If ν : ψ!F → F ◦ ϕ exhibits F : D → E as the left Kan extension of ψ!F along ϕ, then

F
η−→ (ψ!F ) ◦ ψ νψ−−→ F ◦ ϕψ

exhibits F as the left Kan extension of F along ϕψ.
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(b) If ξ : F → F ◦ ϕψ exhibits F : D → E as the left Kan extension of F along ϕψ, then there
exists a unique natural transformation ν : ψ!F → F ◦ ϕ satisfying ξ = νψ ◦ η, which exhibits
F as the left Kan extension of ψ!F along ϕ.

The analogous result for right Kan extensions also holds.

Proof. Note that we have a commutative diagram of natural isomorphisms

HomFun(C,E)(ψ!F,Gϕ)

HomFun(D,E)(F ,G) HomFun(B,E)(F,Gϕψ)

∼∼

∼

where the right oblique arrow is induced by η.
In case (a) the left oblique arrow is induced by ν, and hence the composite is induced by νψ ◦ η.
In case (b) the horizontal arrow is induced by ξ. The left oblique isomorphism is then induced

by the image of idF , i.e., the preimage of ξ : F → Fϕψ, in HomFun(C,E)(ψ!F, Fϕ). But by definition
of ψ!F , this is the unique map ν : ψ!F → Fϕ such that νψ ◦ η = ξ.

§14. Kan extensions in triangulated categories

Proposition 14.1. Let (Q, ξ) : (C, TC) → (D, TD) and (F, µ) : (C, TC) → (E , TE) be functors of
categories with translation, where ξ : QTC

∼−→ TDQ and µ : FTC
∼−→ TEF are natural isomorphisms.

Suppose that the left Kan extension of F along Q exists.
Then there exists a unique natural isomorphism ν : (Q!F )TD

∼−→ TE(Q!F ) such that (Q!F, ν) is
a left adjoint object of (F, µ) under the functor

Q∗ : Fun
(
(D, TD), (E , TE)

)
−→ Fun

(
(C, TC), (E , TE)

)
In other words: Let η : F → (Q!F )Q be the natural transformation exhibiting Q!F as the left

Kan extension of F along Q. Then:

(i) There exists a unique natural isomorphism ν : (Q!F )TD
∼−→ TE(Q!F ) such that

η : (F, µ) −→ (Q!F, ν) ◦ (Q, ξ)

is a natural transformation of functors with translation.

(ii) For every functor (G, ρ) : (D, TD)→ (E , TE) the natural map

Hom
(
(Q!F, ν), (G, ρ)

) ∼−→ Hom
(
(F, µ), (G, ρ) ◦ (Q, ξ)

)
induced by η is bijective.

A similar result holds for right Kan extensions.
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Proof. We first prove (i). Unraveling the definitions, we need to show that there exists a unique
isomorphism ν : (Q!F )TD

∼−→ TE(Q!F ) making the following diagram commutative:

FTC TEF

(Q!F )QTC (Q!F )TDQ TE(Q!F )Q.

ηTC

µ

∼

TEη

(Q!F )ξ

∼
νQ

∼

This statement follows from the claim that the composite

(14.1) FTC
ηTC−−→ (Q!F )QTC

(Q!F )ξ−−−−→ (Q!F )TDQ

exhibits (Q!F )TD as the left Kan extension of FTC along Q. We consider the following diagram

C

D C E

D

Q T−1
C

F

T−1
D

FTC

Q

(Q!F )TD=Q!(FTC)

By Observation 7.1 the functor TD is right adjoint to T−1
D , so the unit αD : idD

∼−→ TDT
−1
D and

counit βDT−1
D TD

∼−→ idD are isomorphisms. Similarly, for T−1
C a TC with unit αC . We consider the

following commutative diagram

(14.2)
F (Q!F )Q (Q!F )TD ◦ T−1

D Q

FTC ◦ T−1
C (Q!F )QTCT

−1
C (Q!F )TD ◦QT−1

C ,

η

FαC

Q!FαDQ

(Q!F )QαC (Q!F )TDξ
′

ηTCT
−1
C (Q!F )ξT−1

C

where ξ′ : T−1
D Q ∼−→ QT−1

C is defined as the mate of ξ, so that the diagram

Q QTCT
−1
C TDQT

−1
C

TDT
−1
D Q TDT

−1
D QTCT

−1
C TDT

−1
D TDQT

−1
C TDQT

−1
C

αDQ

QαC

αDQTCT
−1
C

ξT−1
C

αDTDQT
−1
C

TDξ
′

TDT
−1
D QαC TDT

−1
D ξT−1

C TDβDQT
−1
C

commutes.
The upper-right circuit in (14.2) shows that (Q!F )TD is the left Kan extension of F along QT−1

C
(combine Proposition 13.17 and Proposition 13.10 (and also Exercise 13.5)). The lower-right circuit
then shows that this left Kan extension is exhibited by the natural transformation

F
FαC−−−→ FTCT

−1
C

[(Q!F )ξ◦ηTC ]T−1
C−−−−−−−−−−−→ (Q!F )TD ◦QT−1

C .
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Again by Proposition 13.17 we deduce that (14.1) exhibits (Q!F )TD as the left Kan extension of
FTC along Q. This finishes the proof of (i).

We now prove (ii). By (i) we have a commutative diagram

Hom
(
(Q!F, ν), (G, ρ)

)
Hom

(
(F, µ), (G, ρ) ◦ (Q, ξ)

)
Hom(Q!F,G) Hom(F,G ◦Q).∼

We immediately deduce that the top horizontal map is injective. We now prove surjectivity, so let
α ∈ Hom((F, µ), (G, ρ) ◦ (Q, ξ)). Since the bottom map is surjective, there exists β : Q!F → G such
that α = βQ ◦ η. Since α is compatible with the translations, we deduce that the outer diagram

FTC TEF

(Q!F )QTC (Q!F )TDQ TE(Q!F )Q

GQTC GTDQ TEGQ

ηTC

µ

αTC

TEη

TEα

βQTC

(Q!F )ξ

βTDQ

νQ

TEβQ

Gξ ρQ

is commutative. Now the top rectangle commutes by (i) and the lower left square commutes by

naturality. Again by the proof of (i) the composite FTC
ηTC−−→ (Q!F )QTC

(Q!F )ξ−−−−→ (Q!F )TDQ exhibits
(Q!F )TD as the left Kan extension of FTC along Q, i.e., the map

Hom((Q!F )TD, TEG) ∼−→ Hom(FTC , TEGQ)

is an isomorphism. But under this map both TEβ ◦ν and ρ◦βTD are sent to the same natural trans-
formation FTC → TEGQ, hence they are equal. But this shows that β lies in Hom((Q!F, ν), (G, ρ))
as desired.

Definition 14.2. Let (C, T ) be a triangulated category and let N ⊆ C be a triangulated subcategory.
Denote (Q, ξ) : (C, T )→ (C/N , T ′) the localization functor. Let (F, µ) : (C, T )→ (D, S) be an exact
functor.

(a) A left Kan extension Q!F : C/N → D of F along Q is called exact if (Q!F, µ
′) is exact, where

µ′ : Q!F ◦ T ′ ∼−→ S ◦Q!F is the natural isomorphism from Proposition 14.1.

(b) A right Kan extension Q∗F : C/N → D of F along Q is called exact if (Q∗F, µ
′′) is exact,

where µ′′ : Q∗F ◦ T ′ ∼−→ S ◦Q∗F is the natural isomorphism from Proposition 14.1.

Remark 14.3. Suppose that (Q, ξ) : (C, T )→ (C/N , T ′) is a localization and (F, µ) : (C, T )→ (D, S)
is an exact functor such that the left Kan extension Q!F : C/N → D is absolute.

Deligne proves in [Del06, Proposition 1.2.2(ii)] that the functor (Q!F, ν) is exact, where ν is the
natural isomorphism from Proposition 14.1. An accessible explanation can also be found at [GVu],
but the proof is outside the scope of this lecture.



§14. Kan extensions in triangulated categories 87

Definition 14.4. Let F : A → B be an additive functor of abelian categories. Let ∗ ∈ {∅,+,−, b}
and denote by QA : K∗(A)→ D∗(A) and QB : K(B)→ D(B) the localization functors at the quasi-
isomorphisms.

K∗(A) K(B)

D∗(A) D(B).

QA

KF

QBη

RF

Then an exact absolute left Kan extension

RF := QA!(QB ◦ KF ) : D∗(A) −→ D(B)

(if it exists) is called the right derived functor of F . Note that RF comes with an exact natural
transformation η : QB ◦ KF → RF ◦QA and satisfies the following universal property: For all exact
functors (G, ρ) : D∗(A)→ D(B) and natural transformations ζ : QB ◦ KF → G ◦QA there exists a
unique natural transformation ξ : RF → G such that ζ = ξQA ◦ η:

QBKF RF ◦QA RF

G ◦QA G.

η

ζ
ξQA ∃!ξ

We denote by RiF (for i ∈ Z) the composition

A ↪−→ D∗(A)
RF−−→ D(B)

Hi−→ B,

and call it the i-th right derived functor of F .

Example 14.5. Let F : A → B be an exact functor of abelian categories. Then the right derived
functor RF : D(A) → D(B) exists and is given by applying F componentwise to a complex. This
follows from Lemma 12.9 and Lemma 13.8.

Remark 14.6 (Relation to universal δ-functors). Let F : A → B be a (left exact) functor and let
RF : D∗(A)→ D(B) be the right derived functor of F .

For every short exact sequence 0 → A
f−→ B

g−→ C → 0 we obtain a distinguished triangle
A

f−→ B
g−→ C

δ−→ A[1] and hence a long exact sequence

· · · R0F (A) R0F (B) R0F (C)

R1F (A) R1F (B) R1F (C)

R2F (A) · · ·

R0F (f) R0F (g)

δ0

R1F (f) R1F (g)

δ1

which is visibly natural in the short exact sequence 0→ A→ B → C → 0. Hence, ({RiF}i, {δi}i)
defines a δ-functor. Moreover, the natural transformation η : QBKF → RFQA induces a natural
transformation η′ : F → R0F of functors A → B.
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At this point, we may ask whether it is true that ({RiF}i, {δi}i) is universal. It seems that this
question cannot be resolved from the general theory alone. We will next prove a criterion for the
existence of right derived functors, which allows us to give an affirmative answer.

Remark 14.7. Let RF : D∗(A) → D(B) be the right derived functor of an additive functor
F : A → B between abelian categories. Then

(i) RiF = 0 for all i < 0.
(ii) R0F : A → B is left exact.

Proof. (ii) follows from (i) and the long exact sequence. For the proof of (i) we start with a general
fact about colimits:

Step 1: Every right adjoint functor R : J → I is cofinal, i.e., for every functor F : I → C the
colimit colimF exist if and only if colimFR exists and in this case the canonical map

colim
(
J R−→ I F−→ C

) ∼−→ colim
(
I F−→ C

)
is an isomorphism.

Let pI : I → ∗ and pJ : J → ∗ be the projections and denote by L : I → J the left adjoint of
R. For any c ∈ C, viewed as a functor ∗ → C we have that cpJL = cpI and cpJ = cpJLR are the
constant functors with value c. We have a commutative diagram

HomFun(I,C)(F, cpJL) HomFun(J ,C)(FR, cpJ )

HomFun(I,C)(F, cpI) HomFun(J ,C)(FR, cpJ )

HomC(colimF, c) HomC(colimFR, c),

∼

R
∼

where the top horizontal map is an isomorphism by the adjunction. Hence the middle horizontal
map is an isomorphism, which proves the claim.

Step 2: Denote by K≥0(A) ⊆ K∗(A) and D≥0(A) ⊆ D∗(A) the full subcategories spanned by
the complexes X with Hi(X) = 0 for all i < 0, and let Q≥0 : K≥0(A) → D≥0(A) be the functor
induced by Q. For every X ∈ D≥0(A) the inclusion functor

Q≥0/X −→ Q/X

is a right adjoint and hence cofinal by Step 1. Note that every map f : Q(Y )→ X factors uniquely

as a composite Q(Y ) → τ≥0Q(Y ) = Q≥0(τ≥0Y )
f ′−→ X, and hence one easily checks that the left

adjoint is given by sending (Y, f) 7→ (τ≥0Y, f ′).

Step 3: We now prove the claim. Note that RF : D∗(A) → D(B) is the absolute left Kan
extension of QB ◦ KF along QA. Hence, for any i < 0, Hi ◦ RF is the left Kan extension of HiKF
along QA. Note that HiRF is again absolute and in particular pointwise. By Proposition 13.14 and
Steps 1 and 2 we compute, for all X ∈ D≥0(A),

HiRF (X) = colim
Y ∈Q/X

HiKF (Y )
∼←− colim

Z∈Q≥0/X
HiK≥0F (Z) = 0.
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§15. Existence of derived functors

We start with a general existence criterion.

Theorem 15.1. Let (C, T ) be a triangulated category and N ⊆ C a triangulated subcategory, and
denote by Q : C → C/N the localization functor. Let F : C → D be an exact functor and suppose
that there exists a full triangulated subcategory ι : L ↪→ C satisfying the following conditions:

• For every X ∈ C there exists a map s : X → ιY in SN with Y ∈ L (that is, there exists a
distinguished triangle X s−→ ιY → N → T (X) with N ∈ N ).

• We have F (Y ) = 0 for all Y ∈ L ∩N .

Then there exists an exact, absolute left Kan extension Q!F : C/N → D of F along Q. Moreover,
for every Y ∈ L the canonical map

F (Y ) ∼−→ Q!F (QY )

is an isomorphism.

Proof. Let ι : L ↪→ C be the inclusion and put N ′ := L ∩ N . Observe that the induced func-
tor j : L/N ′ ∼−→ C/N is an equivalence of categories by Corollary 10.9. Consider the following
commutative diagram:

C

L C/N D

L/N ′

Q

F

ι

QL

QL!(Fι)

j

∼

For every (not necessarily exact) functor G : C/N → D we have the following natural maps

Hom(F,GQ)
ι∗−→ Hom(Fι,GQι) ∼= Hom(Fι,GjQL)

∼= Hom(QL!(Fι), Gj) ∼= Hom
(
QL!(Fι)j

−1, G
)
.

We claim that ι∗ is bijective. Once this is proven, it follows that QL!(ιF )j−1 : C/N → D is the left
Kan extension of F along Q. Since the outer diagram commutes, we compute

F (ιY ) = QL!(Fι)QL(Y ) = QL!(Fι)j
−1jQL(Y ) = Q!F (QιY ),

for every Y ∈ L, which implies the last assertion of the theorem. It follows from Lemma 13.8 and
Theorem 11.2 that QL!(Fι), hence also Q!F , is absolute and exact.

It remains to prove that ι∗ : Hom(F,GQ)→ Hom(Fι,GQι) is bijective. Note that the functor
H := GQ : C → D has the following property: For all X ∈ C there exists a map s : X → ιY in SN
with Y ∈ L such that:

(a) H(s) is an isomorphism, and
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(b) For all maps t : X → ιY ′ with Y ′ ∈ L (not necessarily in SN ) there exist maps Y t′−→ Y ′′
s′←− Y ′

in L such that Hι(s′) is an isomorphism and the diagram

X ιY

ιY ′ ιY ′′

s

t ιt′

ιs′

commutes.

Indeed, for (a) this is obvious. Let us verify (b). By Theorem 11.3(i) and (S3) we can complete the
diagram ιY ′

t←− X s−→ ιY to a commutative square

X ιY

ιY ′ Z

t

s

t̃

s̃

with s̃ ∈ SN . By assumption, we find a map s̃′ : Z → ιY ′′ in SN with Y ′′ ∈ L. Since ι is fully
faithful, there exist unique maps s′ : Y ′ → Y ′′ and t′ : Y → Y ′′ such that ι(s′) = s̃′s̃ and ι(t′) = s̃′t̃
as desired.

We first prove that ι∗ : Hom(F,H)→ Hom(Fι,Hι) is injective. To this end, let α, β : F → H be
natural transformations such that αι = βι. Let now X ∈ C be fixed but arbitrary. By assumption
we find a map s : X → ιY in SN with Y ∈ L such that H(s) is an isomorphism. We calculate

H(s)αX = αιY F (s) = βιY F (s) = H(s)βX .

As H(s) is an isomorphism, we deduce αX = βX . Since X was arbitrary, it follows that α = β.
We now prove that ι∗ is surjective. Let α : Fι→ Hι be a natural transformation. We define a

new natural transformation β : F → H as follows: For every X ∈ C we choose a map s : X → ιY
in SN with Y ∈ L and define βX := H(s)−1αY F (s) : F (X)→ H(X). We need to check that βX is
independent of the choice of s and defines a natural transformation. Let t : X → ιY ′ be any map
and choose Y t′−→ Y ′′

s′←− Y ′ as in (b). Consider the following diagram:

F (X) H(X)

F (ιY ) H(ιY )

F (ιY ′′) H(ιY ′′)

F (ιY ′) H(ιY ′).

F (t)

βX

F (s)

H(s)

∼

H(t)F (ιt′)

αY

H(ιt′)

αY ′′
F (ιs′)

αY ′

H(ιs′)

∼

Since every small quadrilateral commutes and H(ιs′) is an isomorphism, we deduce that the outer
square commutes. In particular, βX does not depend on the choice of s. Let now f : X → X ′ be a
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morphism in C. Choose maps s : X → ιY and t : X ′ → ιY ′ in SN with Y, Y ′ ∈ L. By (b) we find

maps Y t′−→ Y ′′
s′←− Y ′ in L such that ιs′ ◦ tf = ιt′ ◦ s. Consider the diagram

F (X) F (X ′) F (ιY ′)

H(X) H(X ′) H(ιY ′),

F (f)

βX

F (t)

βX′ αY ′

H(f) H(t)

∼

where the outer diagram and the right square commute by what we have shown above. Since H(t) is
an isomorphism, it follows that the left square commutes, i.e., β : F → H is a natural transformation
such that βι = α. Hence ι∗ is surjective. This finishes the proof.

Theorem 15.2. Let F : A → B be an additive functor of abelian categories. Suppose there is a full
subcategory L ⊆ A satisfying the following properties:

(a) For every X ∈ A there exists an injection X ↪→ L into some L ∈ L.
(b) Let 0→ L→ A→ B → 0 be a short exact sequence with L ∈ L. Then we have A ∈ L if and

only if B ∈ L.

Then:

(i) Every complex X ∈ K+(A) admits a quasi-isomorphism X → L into a complex L ∈ K+(L).

(ii) Suppose that the following condition is satisfied:

(c) For all short exact sequences 0 → L′ → L → L′′ → 0 with L′, L, L′′ ∈ L, the induced
sequence 0→ F (L′)→ F (L)→ F (L′′)→ 0 is exact.

The right derived functor RF : D+(A)→ D(B) exists and can be computed as

RF (QA(X)) = QBKF (L),

where X → L is any quasi-isomorphism with L ∈ K+(L).

Proof. Let X ∈ K+(A) and fix i0 with Xi = 0 for all i < i0. Put Li = 0 for all i < i0. Assume now
that for some n ∈ Z we have constructed a morphism of complexes

X : · · · Xn−2 Xn−1 Xn · · ·

L<n : · · · Ln−2 Ln−1

f fn−2

dn−2
X dn−1

X

fn−1

dn−3
L dn−2

L

satisfying the following property

(∗n) The induced morphism Hi(X)→ Hi(L<n) is an isomorphism for i ≤ n−2 and a monomorphism
for i = n− 1.
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We now define Mn and Nn in A by the following pushout squares:

Coker(dn−2
X ) Ker(dnX) Xn

Coker(dn−2
L ) Mn Nn.

p p

Note that, since Ker(dnX) ↪→ Xn is monic, Proposition 3.10 shows that the right square is also
a pullback and Mn ↪→ Nn is monic. Choose a monomorphism Nn ↪→ Ln with Ln ∈ L and let
dn−1
L : Ln−1 → Ln and fn : Xn → Ln be the obvious maps. From the construction it is clear that
fndn−1

X = dn−1
L fn−1. Hence, we obtain a morphism X → L≤n of complexes, and it remains to

check that the property (∗n+1) is satisfied. Consider the commutative diagram

0 Hn−1(X) Coker(dn−2
X ) Ker(dnX) Hn(X) 0

0 Ker(d′L) Coker(dn−2
L ) Mn Hn(X) 0.

∼

d′X

p
d′L

The top row is exact by construction. For the exactness of the bottom row, we note that Propo-
sition 3.10 shows that Hn(X) = Coker(d′X) ∼−→ Coker(d′L) is an isomorphism. Note also that
Hn−1(X) ∼−→ Ker(d′L) is an isomorphism. It is epic by Proposition 3.10, and it is monic by the
assumption that Hn−1(X) ↪→ Hn−1(L<n) is monic.

As Mn ↪→ Ln is a monomorphism, we finally conclude that Hn−1(X) ∼−→ Hn−1(L≤n) is an
isomorphism and Hn(X) ↪→ Hn(L≤n) is monic. This finishes the induction step and hence part (i).

We now prove (ii). By (b), L is closed under direct sums. Therefore, K+(L) ⊆ K+(A) is a
triangulated subcategory. Let now L ∈ K+(L) be an acyclic complex. Thus, L decomposes into

short exact sequences 0 → Ker(dnL) → Ln
dnL−−→ Ker(dn+1

L ) → 0 for n ∈ Z. As L is bounded below,
repeated application of (b) shows that each Ker(dnL) lies in L, and hence by (c), the sequences
0 → F (Ker(dnL)) → F (Ln) → F (Ker(dn+1

L )) → 0 are exact for all n ∈ Z. It follows that F (L) is
acyclic. Now the assertion follows from Theorem 15.1.

Remark 15.3. In the context of Theorem 15.2, it follows directly from the computation of RF in
(ii) that RiF = 0 for all i < 0 and that the objects L ∈ L are F -acyclic, that is, RiF (L) = 0 for all
i > 0. Consequently, the δ-functor ({RiF}i, {δi}i) is effaceable and hence universal.

Example 15.4. Let F : A → B be a left exact functor and suppose that A has enough injectives.
Then every short exact sequence 0→ I → A→ B → 0 in A with I injective splits; taking L to be
the full subcategory of injective objects, it follows easily that the hypotheses of Theorem 15.2 are
satisfied. Hence, the derived functor RF : D+(A)→ D(B) exists and is computed by RF (X) = F (I•)
for every X ∈ A, where X → I• is an injective resolution. This recovers the classical definition of
derived functors.

Exercise 15.5. Let X be a topological space and consider the global sections functor

Γ(X,−) : Shv(X,Ab)→ Ab.
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Let L ⊆ Shv(X,Ab) be the full subcategory of flabby sheaves, that is, sheaves F such that for all
open subsets U ⊆ V ⊆ X the restriction map F(V )→→ F(U) is surjective.

Show that L satisfies the hypotheses of Theorem 15.2 and deduce that the right derived functor
RΓ(X,−) : D+(Shv(X,Ab))→ D(Ab) exists. The higher derived functor Hn(X,−) := HnRΓ(X,−)
is the usual n-th sheaf cohomology.

In the case of enough injectives, Theorem 15.2 allows the following simplification:

Theorem 15.6. Let A be an abelian category with enough injectives, and denote I ⊆ A the full
subcategory of injective objects. Then

(i) The functor Q : K+(A) → D+(A) is a Bousfield localization. More precisely, the restriction
Q
∣∣
K+(I)

: K+(I) ∼−→ D+(A) is an equivalence of triangulated categories. We denote by

i : D+(A) ∼−→ K+(I) ⊆ K+(A)

a right adjoint of Q which factors through K+(I).
(ii) The unit η : idK+(A) → iQ gives functorial injective resolutions: For every X ∈ K+(A) the

map ηX : X → iQ(X) is a quasi-isomorphism into a complex of injectives.
(iii) Let F : A → B be an additive functor of abelian categories. Then the right derived functor RF

is computed as the composition

D+(A)
i−→ K+(I)

KF |K+(I)−−−−−−→ K(B)
QB−−→ D(B).

Proof. Since A has enough injectives and K+(I) clearly satisfies the hypotheses of Theorem 15.2, we
deduce that for every X ∈ K+(A) there exists a quasi-isomorphism X → I with I ∈ K+(I). We need
to show that every object I ∈ K+(I) is local with respect to quasi-isomorphisms. Then (i) follows
from Proposition 13.9. Alternatively, we can apply Corollary 10.9 to the subcategory D = K+(I).
Since qis ∩ K+(I) consists of isomorphisms, we deduce that K+(I) = K+(I)qis

∼−→ D+(A) is an
equivalence of categories. Part (iii) follows from (the proof of) Theorem 15.1 or Proposition 13.10.

Since HomK+(A)(−, I) is a cohomological functor by Proposition 4.7, we see that I ∈ K+(I) is
local if and only if

HomK+(A)(X, I) = 0

for every acyclic complex X ∈ K+(A). We even prove this in the case where X is unbounded. So
let f : X → I be a map of complexes, where X is acyclic. We need to show that f is null homotopic,
which is a standard exercise. Fix i0 such that Ii = 0 for all i < i0. We construct a homotopy
{si : Xi → Ii−1}i inductively as follows: For i ≤ i0 we put si := 0. Suppose that for some n we
have constructed maps {si}i≤n such that

f i−1 = sidi−1
X + di−2

I si−1(15.1)

for all i ≤ n,

· · · Xn−2 Xn−1 Xn Xn+1 · · ·

· · · In−2 In−1 In In+1 · · · .

dn−2
X

fn−2

dn−1
X

fn−1
sn−1

dnX

fnsn fn+1
sn+1

dn−2
I dn−1

I
dnI
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Now, we compute

(fn − dn−1
I sn) ◦ dn−1

X = fndn−1
X − dn−1

I sndn−1
X = dn−1

I fn−1 − dn−1
I sndn−1

X

= dn−1
I ◦ (fn−1 − sndn−1

X ) = dn−1
I ◦ dn−2

I sn−1 = 0. (by (15.1)).

As X is exact at Xn, we deduce that fn − dn−1
I sn factors as Xn dnX−−→ Im(dnX)

s−→ In. As In is

injective, we can factor s as a composite Im(dnX) ↪→ Xn+1 sn+1

−−−→ In+1. By construction we have
fn = sn+1dnX + dn−1

I sn, which finishes the induction step. Therefore, f is null homotopic.

Remark 15.7. Let A be an abelian category and I ∈ K+(A) be a complex of injectives and
X ∈ K(A). The proof of Theorem 15.6(i) shows that I is qis-local and then Proposition 13.9(i)
shows that the map

HomK(A)(X, I) ∼−→ HomD(A)(QX,QI)

is an isomorphism.

Up until now we have only proved the existence of derived functors in the bounded case. In order
to obtain a criterion for unbounded derived functors, we either need to put stronger hypotheses on
the functor or on the category. We will explore the first case now and postpone the latter case to
Theorem 17.11.

Theorem 15.8. Let A be an abelian category and let L ⊆ A be a full subcategory satisfying
conditions (a) and (b) of Theorem 15.2.

(i) Suppose that there exists an integer d ≥ 0 such that for all exact sequences

L0 → L1 → · · · → Ld−1 → Ld → 0

we have that L0, . . . , Ld−1 ∈ L implies Ld ∈ L.
Then every complex X ∈ K(A) admits a quasi-isomorphism X → L into a complex L ∈ K(L).

(ii) Let F : A → B be an additive functor. Suppose that F satisfies condition (c) in Theo-
rem 15.2(ii) and has finite cohomological dimension, i.e., there exists an integer d ≥ 0
such that RiF = 0 for all i > d.

Then the right derived functor RF : D(A)→ D(B) exists and can be computed as

RF (QA(X)) = QBKF (L),

where X → L is any quasi-isomorphism with L ∈ K(L).

Proof. We first show how to deduce (ii) from (i). By Theorem 15.2 the bounded derived functor
RF : D+(A) → D(B) exists. Hence also the higher derived functors RiF exist. We now apply (i)
to the full subcategory L′ ⊆ A consisting of F -acyclic objects. We need to check that conditions
(a), (b) and (c) of Theorem 15.2 are satisfied. Since L ⊆ L′ by Remark 15.3, it is clear that every
object A ∈ A admits a monomorphism A ↪→ L with L ∈ L′, whence (a). Let 0→ L→ A→ B → 0
be a short exact sequence in A such that L is F -acyclic. The long exact sequence in cohomology
then gives a short exact sequence 0 → F (L) → F (A) → F (B) → R1F (L) = 0 and isomorphisms
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RiF (A) ∼−→ RiF (B) for all i ≥ 1. Hence, (b) and (c) are satisfied. Let now L0 → L1 → · · · →
Ld−1 → Ld → 0 be an exact sequence such that L0, . . . , Ld−1 are F -acyclic. We split the sequence
into short exact sequences 0 → Mi → Li → Mi+1 → 0 for 0 ≤ i < d, where Md = Ld. Since each
Li is F -acyclic, the long exact sequence in cohomology gives isomorphisms

RiF (Ld) ∼= Ri+1F (Md−1) ∼= · · · ∼= Ri+dF (M0) = 0

for all i > 0. Hence, Ld is F -acyclic. Together with (c) we deduce that, if L ∈ K(L′) is acyclic, then
so is KF (L). By (i), every X ∈ K(A) admits a quasi-isomorphism X → L with L ∈ K(L′). Now,
(ii) follows from Theorem 15.1.

It remains to prove (i). We proceed in several steps.

Step 1: For any X ∈ K(A) and n ∈ Z there exists a quasi-isomorphism X → Y such that
Y i ∈ L for all i ≥ n.

Indeed, consider the brutal truncation

σ≥nX := [· · · 0→ 0→ Xn → Xn+1 → · · · ].

Now, Theorem 15.2(i) provides a quasi-isomorphism σ≥nX → Z with Z ∈ K+(L). Composing with
the quasi-isomorphism Z → τ≥nZ, and noting that (τ≥nZ)n = Coker(dn−1

Z ) ∈ L (this follows from
the assumption in (i)), we may assume Zi = 0 for all i < n. Now, the spliced complex

Y := [· · ·Xn−2 → Xn−1 dn−1

−−−→ Zn → Zn+1 → · · · ],

where dn−1 is given as the composition Xn−1 → Xn → Zn, is as desired.

Step 2: Fix integers m < n and let X ∈ K(A) such that Xi ∈ L for all i ≥ n. Then there exists
a quasi-isomorphism X → Y such that Y i ∈ L for all i ≥ m and Xj ∼−→ Y j is an isomorphism for
all j ≥ n+ 1 + d.

By Step 1 we find a quasi-isomorphism f : X → Z such that Zi ∈ L for all i ≥ m. By
Lemma 12.2(ii) the mapping cone M := Mc(f) is acyclic. In other words, Coker(di−2

M ) ∼−→ Ker(diM )
is an isomorphism for all i. Note that M i = Xi+1 ⊕ Zi ∈ L for all i ≥ n− 1. Moreover, from the
exact sequence

M i →M i+1 · · · →M i+d−1 → Ker(di+dM )→ 0

and our assumption, we deduce Ker(di+dM ) ∈ L for all i ≥ n − 1. Moreover, contemplating the
diagram

M i Xi+1 ⊕ Zi

M i+1 Xi+2 ⊕ Zi+1

=

diM −di+1
X fi+1 diZ

=

we observe that Ker(diM ) = Ker(di+1
X )×Zi+1 Zi and Coker(diM ) = Xi+2 tXi+1 Coker(diZ).

We put a := n+ d. To summarize, we have an isomorphism

Coker(da−2
M ) = Xa tXa−1 Coker(da−2

Z ) ∼−→ Ker(da+1
X )×Za+1 Za = Ker(daM )
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in L and a commutative diagram

Xa−1 Xa Xa+1

Za−1 Coker(da−2
M )

Ker(daM ) Xa+1

Za−1 Za Za+1.

∼

Hence, defining Y to be the complex

Y := [· · · → Za−2 → Za−1 da−1
Y−−−→ Ker(daM )

daY−−→ Xa+1 → Xa+2 → · · · ],
we have maps X → Y → Z, Y i ∈ L for all i ≥ m and Xi ∼−→ Y i is an isomorphism for all
i ≥ a+ 1 = n+ d+ 1. It remais to show that g : X → Y is a quasi-isomorphism. It is obvious that
Hi(g) is an isomorphism whenever i /∈ {a− 1, a, a+ 1}, so it remains to treat these three cases.

Note that Im(daY ) = Im
(
Xa tXa−1 Coker(da−2

Z )
(daX ,0)−−−−→ Xa+1

)
= Im(daX), from which we deduce

Ha+1(Y ) ∼= Ha+1(X). Similarly, we have Ker(da−1
Y ) = Ker

(
Za−1

(0,da−1
Z )

−−−−−→ Ker(daX) ×Za+1 Za
)

=

Ker(da−1
Z ), and hence Ha−1(Y ) ∼= Ha−1(Z) ∼= Ha−1(X). Finally, we show that Ha(X → Y ) is an

isomorphism. First note that

Xa−1 Xa

Za−1 Coker(da−2
Z ) Y a

da−1
X

p

da−1
Y

is a pushout diagram, and hence Coker(da−1
X ) ∼−→ Coker(da−1

Y ) by Proposition 3.10(ii). Now we have
a commutative diagram

0 Ha(X) Coker(da−1
X ) Xa+1

0 Ha(Y ) Coker(da−1
Y ) Y a+1,

∼ id

where the rows are exact. The five lemma shows that Ha(X → Y ) is an isomorphism.

Step 3: Completion of the proof. Let X ∈ K(A). Take an infinite sequence of integers
n0 > n1 > n2 > · · · . Step 1 provides a quasi-isomorphism X → Y0 such that Y i0 ∈ L for all i ≥ n0.
By Step 2, we inductively construct a sequence Y0 → Y1 → Y2 → · · · of quasi-isomorphisms such
that Y ik ∈ L for all i ≥ nk and such that Y jk

∼−→ Y jk+1 is an isomorphism for all j ≥ nk+1+d. We now
consider the complex Y := lim−→k

Yk in C(A). Then Y ∈ K(L) and X → Y is a quasi-isomorphism:
Indeed, for any n ∈ Z, pick k such that nk + 1 + d < n, so that Y i = Y ik ∈ L for all i ≥ n− 1. Then
Hn(Yk → Y ) is an isomorphism, hence so is Hn(X → Y ).
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§16. The Ext-functor

We apply the machinery in the last section to determine the right derived functors of the Hom
functor.

Definition 16.1. Let A be an abelian category with enough injectives, and let A ∈ A. The higher
right derived functor ExtnA(A,−) := Rn HomA(A,−) : A → Ab is called the n-th Ext functor.

Note the functor ExtnA(A,−) is natural in A (e.g., by Remark 13.2), so that we obtain a bifunctor

ExtnA : Aop ×A −→ Ab.

In practice it turns out that the derived functors of many functors (namely, the representable
ones) can be described in terms of the Ext-functor:

Example 16.2. Let X be a topological space. Denoting by Z ∈ Shv(X,Ab) the constant sheaf Z,
we have a natural isomorphism Γ(X,F) ∼= Hom(Z,F) for every sheaf F ∈ Shv(X,Ab). Thus, for
each n ≥ 0 we deduce a natural isomorphism

ExtnShv(X,Ab)(Z,F) ∼= Hn(X,F).

Exercise 16.3. Let A be an abelian category and fix A,B ∈ A. An extension of A by B is defined
to be a short exact sequence (f,E, g) := [0 → B

f−→ E
g−→ A → 0]. Given two extensions (f,E, g)

and (f ′, E′, g′), we write (f,E, g) ∼ (f ′, E′, g′) if there exists a map h : E → E′ such that f ′ = h ◦ f
and g′ ◦ h = g.

(i) Show that ∼ is an equivalence relation.

(ii) Let Ext(A,B) be the set of equivalence classes of extensions of A by B. Show that the
assignment (A,B) 7→ Ext(A,B) enhances to a bifunctor Ext: Aop ×A → Set.

(iii) Show that Ext(A,B) is canonically an abelian group.

(iv) Suppose that A has enough injectives. Construct a natural isomorphism

Ext(A,B) ∼= Ext1
A(A,B)

of abelian groups.

Our goal in this section is to show that Ext-groups have a natural description inside the derived
category of an abelian category. To this end, we make the following general definition:

Definition 16.4. Let A be an abelian category, and let X,Y ∈ D(A). For any n ∈ Z, the abelian
group

Extn(X,Y ) := HomD(A)(X,Y [n])

is called the n-th Hyperext of X,Y .

Definition 16.5. Let A be an abelian category and fix X,Y ∈ K(A). We define a complex
Hom•(X,Y ) via

Homn(X,Y ) :=
∏
i∈Z

HomA(Xi, Y i+n)
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for all n ∈ Z. The differential dn : Homn(X,Y )→ Homn+1(X,Y ) is defined by

(dnf)i := dn+i
Y fi − (−1)nfi+1d

i
X

as a map Xi → Y i+n+1.

Lemma 16.6. Let A be an abelian category and fix X ∈ K(A). Then:

(i) The assignment Y 7→ Hom•(X,Y ) induces an exact functor Hom•(X,−) : K(A)→ K(Ab).
(ii) For every Y ∈ K(A) and n ∈ Z we have

Hn(Hom•(X,Y )) = HomK(A)(X,Y [n]).

(iii) Suppose that A has enough injectives. Let Y ∈ K+(A) be a complex of injective objects and
suppose one of Y , X is acyclic. Then Hom•(X,Y ) is acyclic.

Proof. We first prove (i). It is clear that Hom•(X,−) : C(A)→ C(Ab) is a functor. Let ϕ : Y → Z
be a null homotopic map and fix a null homotopy s, so that ϕ = dZs + sdY . We claim that the
induced maps sn∗ : Homn(X,Y )→ Homn−1(X,Z) define a null homotopy of ϕ∗ = Hom•(X,ϕ). We
compute

ϕ∗(f) = ϕf = dZsf + sdY f = dZsf + sdn(f) + (−1)nsfdX = dZsf − (−1)n−1sfdX + sdn(f)

= dn−1(sf) + sdn(f) = (dn−1 ◦ s∗ + s∗ ◦ dn)(f),

for any f ∈ Homn(X,Y ), hence ϕ∗ is indeed null homotopic. We conclude that Hom•(X,−)
descends to a functor on the homotopy categories.

We now address the exactness. Define a natural isomorphism

ξ : Homn(X,Y [1]) =
∏
i∈Z

HomA(Xi, Y n+i+1) ∼−→
∏
i∈Z

HomA(Xi, Y n+1+i) = Homn(X,Y )[1]

(fi)i 7−→ (fi)i;

it is trivial to check that ξ preserves the differentials. Let now g : Y → Z be a map of complexes.
We construct an isomorphism

α : Hom•(X,Mc(g)) ∼−→ Mc
(
Hom•(X, g)

)
via ∏

i∈Z
HomA(Xi, Y n+i+1 ⊕ Zn+i) ∼−→

∏
i∈Z

HomA(Xi, Y n+1+i)⊕
∏
i∈Z

HomA(Xi, Zn+i),

(fi)i 7−→
(
(fYi )i, (f

Z
i )i
)
,

where fYi denotes the composition of fi with the projection to Y n+1+i, and likewise for fZi . We
need to check that this map preserves the differentials. To this end, let f ∈ Homn(X,Mc(g)). On
the one hand we compute

(dnf)i = dn+i
Mc(g) ◦ fi − (−1)nfi+1 ◦ diX

=

(
−dn+i+1

Y 0

gn+i dn+i
Z

)
◦
(
fYi
fZi

)
− (−1)n

(
fYi+1

fZi+1

)
◦ diX

=

(
−dn+i+1

Y ◦ fYi − (−1)nfYi+1 ◦ diX
gn+i ◦ fYi + dn+i

Z ◦ fZi − (−1)nfZi+1 ◦ diX

)
.
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On the other hand, we compute[(
dnHom(X,Y )[1] 0

g dnHom(X,Z)

)(
fY

fZ

)]
i

=

(
−dn+1

Hom(X,Y )(f
Y )

g ◦ fY + dnHom(X,Z)(f
Z)

)
i

=

(
(−1) · (dn+1+i

Y ◦ fYi − (−1)n+1fYi+1 ◦ diX)

gn+i ◦ fYi + dn+i
Z ◦ fZi − (−1)nfZi+1 ◦ diX

)
and observe that both expressions agree. Hence α is indeed an isomorphism of complexes.

Now, given the distinguished triangle Y
u−→ Z

v−→ Mc(u)
w−→ Y [1] in K(A), we obtain an

isomorphism of triangles

Hom•(X,Y ) Hom•(X,Z) Hom•(X,Mc(u)) Hom•(X,Y [1])

Hom•(X,Y ) Hom•(X,Z) Mc
(
Hom•(X,u)

)
Hom•(X,Y )[1],

u∗ v∗

α∼

w∗

∼ ξ

u∗

where we note that the diagram already commutes in C(A). This finishes the proof that Hom•(X,−)
is exact.

Let us now prove (ii). Since Hn(Hom•(X,Y )) = H0(Hom•(X,Y )[n]) = H0(Hom•(X,Y [n])), we
reduce to the case n = 0. By definition we have

Ker
(
d0 : Hom0(X,Y )→ Hom1(X,Y )

)
= HomC(A)(X,Y )

For any s ∈ Hom−1(X,Y ) we compute (d−1s)i = di−1
Y si + si+1d

i
X , hence we conclude that the

image of d−1 : Hom−1(X,Y ) → Hom0(X,Y ) consists of the null homotopic maps. We conclude
that H0(Hom•(X,Y )) = HomK(A)(X,Y ).

For part (iii), let Y ∈ K+(A) be a complex of injective objects and suppose that either X or Y
is acyclic. In view of (ii), it suffices to show HomK(A)(X,Y [n]) = 0. But by Remark 15.7 we have

HomK(A)(X,Y [n]) ∼−→ HomD(A)(QX,QY [n]) = 0.

Theorem 16.7. Let A be an abelian category with enough injectives.

(i) For every X ∈ K(A) the derived functor

R Hom•(X,−) : D+(A)→ D(Ab)

exists.

(ii) For every X ∈ K(A), Y ∈ D+(A) and n ∈ Z we have

HnR Hom•(X,Y ) = HomD(A)(QX,Y [n]) = Extn(QX,Y ).

(iii) For every X,Y ∈ A and n ∈ Z, we have

ExtnA(X,Y ) = Extn(X,Y ).
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Proof. For (i), apply Theorem 15.1 to the full subcategory L ⊆ K+(A) of complexes of injectives,
noting that the hypotheses are satisfied by Theorem 15.6(i) and Lemma 16.6(iii), respectively.

For (ii), let X ∈ K(A), Y ∈ D+(A), and n ∈ Z. Then

HnR Hom•(X,Y ) = Hn Hom•(X, iY ) = HomK(A)(X, iY [n]) = HomD(A)(QX,Y [n]).

Finally, for (iii), we note that for X ∈ A, we have Hom•(X,−) = KHomA(X,−) as functors
K+(A)→ K(Ab). Hence, the claim follows from (ii).

§17. Homotopy limits and homotopy colimits

In general, a triangulated category need not admit arbitrary (co)limits. However, it turns out that,
as soon as countable (co)products exist, one can define the related notion of homotopy (co)limit. In
practice these are quite well behaved although they do not satisfy a universal property.

Lemma 17.1. Let C be a triangulated category. Suppose that C has arbitrary direct sums (resp.
products). Then arbitrary direct sums (resp. products) of distinguished triangles are distinguished.

Proof. This is almost literally the same proof as for Proposition 5.2.

Lemma 17.2. Let C be a triangulated category and let N ⊆ C be a triangulated subcategory.

(i) Suppose that C has arbitrary direct sums. If N is closed under all direct sums then the
localization functor Q : C → C/N preserves these. In particular, also C/N has direct sums.

Conversely, if N is thick and Q preserves arbitrary direct sums, then N is closed under these.

(ii) Suppose that C has arbitrary products. If N is closed under all products, then the localization
functor Q : C → C/N preserves these. In particular, also C/N has products.

Conversely, if N is thick and Q preserves arbitrary products, then N is closed under these.

Proof. Note that (ii) is dual to (i). For the “only if”-direction consider the set SN of morphisms
X → Y whose cone lies in N contains all identities and satisfies the condition

(∗) If (si)i∈I is a collection of morphisms in SN , then
⊕

i∈I si ∈ SN

by Lemma 17.1. Now the same proof as for Proposition 8.10 applies mutatis mutandis. (Observe
that Lemma 8.7 also holds for infinite products of categories.)

The converse follows from the observation that N identifies with Ker(Q) by Remark 11.4, which
is closed under arbitrary direct sums because Q commutes with these.

Example 17.3. Let A be an abelian category.

(a) If A is AB3 (infinite direct sums exist), then K(A) has direct sums (which are given by direct
sums of complexes).

(b) If A is AB4 (infinite direct sums exist and are exact), then D(A) has direct sums (which are
given by direct sums of complexes).

Definition 17.4. Let (C, T ) be a triangulated category.
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(a) If C has countable direct sums, then the homotopy colimit of a sequence

X0
f0−→ X1

f1−→ X2
f2−→ · · · ,

is the object hocolimiXi in C defined by the distinguished triangle

∞⊕
i=0

Xi
id−shift−−−−−→

∞⊕
i=0

Xi −→ hocolim
i≥0

Xi −→ T
( ∞⊕
i=0

Xi

)
;

here, the map id−shift is given by Xn
(id,−fn)−−−−−→ Xn⊕Xn+1 ↪→

⊕∞
i=0Xi on the n-th component.

Informally, the map sends (x0, x1, x2, . . . ) 7→ (x0, x1 − f0(x0), x2 − f1(x1), . . . ). Note that the
homotopy colimit is unique up to (non-unique) isomorphism.

(b) If C has countable products, then the homotopy limit of a sequence

· · · f3−→ X2
f2−→ X1

f1−→ X0

is the object holimiXi in C defined by the distinguished triangle

holim
i≥0

Xi −→
∞∏
i=0

Xi
id−shift−−−−−→

∞∏
i=0

Xi −→ T
(
holim
i≥0

Xi

)
;

here, the map id − shift is given by
∏∞
i=0Xi →→ Xn+1 ⊕ Xn

(−fn+1,id)−−−−−−−→ Xn on the n-th
component. Informally, the map sends (. . . , x1, x0) 7→ (. . . , x1 − f2(x2), x0 − f1(x1)). Note
that the homotopy limit is unique up to (non-unique) isomorphism.

Remark 17.5. Let (C, T ) be a triangulated category which has countable direct sums. Let X0
f0−→

X1
f1−→ · · · be a sequence of maps so that the homotopy colimit hocolimiXi is defined.

• By the definition of hocolimiXi we have maps ιn : Xn → hocolimiXi such that ιn = ιn+1 ◦ fn
for all n ≥ 0.

• Let M ∈ C be any object. Since Hom(−,M) is cohomological (Proposition 4.7), we obtain a
long exact sequence

· · · →
∏∞
i=0 Hom(T−1(Xi),M)

∂−→ Hom(hocolimiXi,M)→
∏∞
i=0 Hom(Xi,M)

(id−shift)∗−−−−−−−−→
∏∞
i=0 Hom(Xi,M)→ · · · .

We deduce that any sequence of maps νn : Xn →M , such that νn = νn+1◦fn for all n ≥ 0, can
be extended to a map ν : hocolimiXi →M which is unique in Hom(hocolimiXi,M) modulo
the image of ∂.

Example 17.6. Let (C, T ) be a triangulated category with countable direct sums and X ∈ C. The
homotopy colimit of X id−→ X

id−→ X
id−→ · · · is X. Similarly, if C has countable products, then the

homotopy limit of · · · id−→ X
id−→ X

id−→ X is X.
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Proof. We will only prove the statement about the homotopy colimit, because the other one is
completely dual. The map

X ⊕
∞⊕
i=0

X
(ι0,id−shift)−−−−−−−−→

∞⊕
i=0

X,

(x, x0, x1, x2, . . . ) 7−→ (x+ x0, x1 − x0, x2 − x1, . . . )

is an isomorphism: The inverse is given on the n-th component by the composite

X
(id,−id)−−−−−→ X ⊕X id⊕∆−−−→ X ⊕

n⊕
i=1

X ↪→
∞⊕
i=0

X

More informally, the inverse is given by sending

(a0, a1, a2, . . . ) 7→
(
a, a0 − a, a0 + a1 − a, · · · ,

n∑
i=0

ai − a, . . .
)
,

where a :=
∑∞
i=0 ai. We thus obtain a split triangle

∞⊕
i=0

X
id−shift−−−−−→

∞⊕
i=0

X
(id)i−−−→ X

0−→ T
( ∞⊕
i=0

X
)
,

which is distinguished by Proposition 5.3(ii).

Exercise 17.7. Let C be a triangulated category.

(i) Let X ∈ C. Show that the homotopy colimit of X 0−→ X
0−→ X

0−→ · · · is 0

(ii) Homotopy colimits commute with direct sums: Consider two sequences (Xi, Xi
fi−→ Xi+1)i≥0

and (Yi, Yi
gi−→ Yi+1)i≥0 in C. Show that there is an isomorphism

hocolim
i

(Xi ⊕ Yi) ∼−→ hocolim
i

Xi ⊕ hocolim
i

Yi.

(iii) Let (Xi, Xi
fi−→ Xi+1)i≥0 be a sequence in C. Show that the induced map hocolimi≥aXi

∼−→
hocolimi≥0Xi is an isomorphism in C (Hint: apply Lemma 4.13.)

Lemma 17.8. Let (C, T ) be a triangulated category which admits countable direct sums, A an abelian
category which is AB5 (filtered colimits exist and are exact), and let H : C → A be a cohomological
functor which preserves countable direct sums.

Let X0
f0−→ X1

f1−→ · · · be a sequence in C and denote by X = hocolimiXi the homotopy colimit.
Then the map

colim
i

H(Xi)
∼−→ H(X)

is an isomorphism.
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Proof. Since H is cohomological and commutes with direct sums, we obtain a long exact sequence

· · · →
∞⊕
i=0

H(Xi)
id−shift−−−−−→

∞⊕
i=0

H(Xi)→ H(X)→
∞⊕
i=0

H(T (Xi))→ · · · .

For each n ≥ 0 the map
⊕n

i=0H(Xi)
id−shift−−−−−→

⊕n+1
i=0 H(Xi) is a monomorphism. As A is AB5, we

deduce that id− shift :
⊕∞

i=0H(Xi)→
⊕∞

i=0H(Xi) is a monomorphism. Hence, the sequence

0→
∞⊕
i=0

H(Xi)
id−shift−−−−−→

∞⊕
i=0

H(Xi)→ H(X)→ 0

is exact, which proves the assertion.

Proposition 17.9. Let A be an abelian category.

(i) Suppose that A is AB4 (infinite direct sums exist and are exact). Let X0
f0−→ X1

f1−→ · · · be a
sequence in D(A), let X ∈ D(A), and let

f : hocolim
i

Xi → X

be a map. Suppose that for each n ∈ Z and i � 0 the map Hn(Xi)
∼−→ Hn(X) is an

isomorphism. Then f is an isomorphism in D(A).

(ii) Suppose that A is AB4* (infinite products exist and are exact). Let · · · f2−→ X1
f1−→ X0 be a

sequence in D(A), let X ∈ D(A), and let

f : X → holim
i

Xi

be a map. Suppose that for each n ∈ Z and i� 0 the map Hn(X)→ Hn(Xi) is an isomorphism.
Then f is an isomorphism in D(A).

Proof. We only prove (i); part (ii) is completely dual. It suffices to show that Hn(f) is an isomor-
phism for every n. Fix n. In view of Exercise 17.7(iii) we may assume that Hn(Xi)

∼−→ Hn(X)
and Hn+1(Xi)

∼−→ Hn+1(X) are isomorphisms for all i ≥ 0. Observe that Hn is cohomological and
commutes with countable direct sums since A is AB4. In view of Example 17.6 we have a morphism
of distinguished triangles⊕∞

i=0Xi

⊕∞
i=0Xi hocolimiXi T

(⊕∞
i=0Xi

)

⊕∞
i=0X

⊕∞
i=0X X T

(⊕∞
i=0X

)
.

id−shift

f

id−shift

0

Applying Hn, we obtain a commutative diagram⊕
i Hn(Xi)

⊕
i Hn(Xi) Hn(hocolimiXi)

⊕
i Hn+1(Xi)

⊕
i Hn+1(Xi)

⊕
i Hn(X)

⊕
i Hn(X) Hn(X)

⊕
i Hn+1(X)

⊕
i Hn+1(X).

' ' Hn(f) ' '

0

Now the five lemma shows that Hn(f) is an isomorphism as desired.
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Example 17.10. Let A be an abelian category and X ∈ D(A).

(i) Suppose that A is AB4 (infinite direct sums exist and are exact). Then the natural maps

hocolim
i

τ≤iX ∼−→ X and hocolim
i

σ≥−iX ∼−→ X

are isomorphisms in D(A).

(ii) Suppose that A is AB4* (infinite products exist and are exact). Then the natural maps

X ∼−→ holim
i

τ≥−iX and X ∼−→ holim
i

σ≤iX

are isomorphisms in D(A).

We can now prove the analog of Theorem 15.6 for unbounded derived categories:

Theorem 17.11. Let A be an abelian category which has enough injectives and is AB4*. Denote
by I ⊆ A the full subcategory of injective objects. Then

(i) The functor Q : K(A)→ D(A) is a Bousfield localization. More precisely, let Khinj(A) ⊆ K(A)
be the smallest triangulated subcategory containing I and which is closed under arbitrary
products. Then the restriction Q

∣∣
Khinj(A)

: Khinj(A) ∼−→ D(A) is an equivalence of triangulated
categories. We denote by

i : D(A) ∼−→ Khinj(A) ⊆ K(A)

a right adjoint of Q which factors through Khinj(A).

(ii) Let F : A → B be an additive functor of abelian categories. Then the right derived functor RF
is computed as the composition

D(A)
i−→ Khinj(A)

KF |Khinj(A)

−−−−−−−→ K(B)
QB−−→ D(B).

Proof. We prove the following statements:

(a) Every object I ∈ Khinj(A) is local with respect to quasi-isomorphisms or, equivalently,
HomK(A)(X, I) = 0 for every acyclic complex X ∈ K(A).

(b) K+(I) ⊆ Khinj(A).

(c) For every X ∈ K(A) there exists a quasi-isomorphism X → I with I ∈ Khinj(A).

Once this is done, the rest of the argument follows exactly as in Theorem 15.6. For part (a), let
L ⊆ K(A) be the full subcategory spanned by all objects I such that HomK(A)(X, I) = 0 for all
acyclic complexes X ∈ K(A). We first show that L is a triangulated subcategory. It is obvious that
L[1] = L. Let now I → I ′ → I ′′ → I[1] be a distinguished triangle in K(A) such that I, I ′ ∈ L. We
claim that I ′′ ∈ L. Indeed, let X ∈ K(A) be an arbitrary acyclic complex. Since HomK(A)(X,−) is
cohomological (Proposition 4.7), we obtain an exact sequence

0 = HomK(A)(X, I
′)→ HomK(A)(X, I

′′)→ HomK(A)(X, I[1]) = 0,
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from which we deduce HomK(A)(X, I
′′) = 0. Hence, I ′′ ∈ L, which shows that L ⊆ K(A) is a

triangulated subcategory. Since HomK(A)(X,−) preserves arbitrary products, it is clear that L is
closed under arbitrary products. It follows that Khinj(A) is contained in L, which verifies (a).

Let us now prove (b). We first show Kb(I) ⊆ Khinj(A). Note that every I ∈ Kb(I) is isomorphic
to the mapping cone of the map σ≤nI[−1]

dn−→ σ>nI. Hence by induction on the number of non-zero
terms in I we deduce I ∈ Khinj(A). Now, for every I ∈ K+(I) the map I → holimn σ

≤nI is a
quasi-isomorphism by Example 17.10. Since I is local by Theorem 15.6 and holimn σ

≤nI is local
by (a), we deduce from Theorem 9.4 that the map is an isomorphism. Hence I ∈ Khinj(A).

For part (c), observe that for every n ≥ 0 there exists a quasi-isomorphism τ≥−nX → In with
In ∈ K+(I), by Theorem 15.6(ii). Since In ∈ Khinj(A) is local by (a), the map

HomK(A)(In+1, In) ∼−→ HomK(A)(τ
≥−n−1X, In)

given by precomposition with τ≥−n−1X → In+1 is an isomorphism. Hence, there exists a map
fn+1 : In+1 → In making the diagram

τ≥−n−1X τ≥−nX

In+1 In

qis qis

fn+1

commutative. We obtain a sequence of maps · · · f3−→ I2
f2−→ I1

f1−→ I0 such that each In lies in
Khinj(A). We deduce that I := holimi Ii ∈ Khinj(A). Consider now the commutative diagram

∏∞
i=0 τ

≥−iX[−1]
∏∞
i=0 τ

≥−iX[−1] X
∏∞
i=0 τ

≥−iX

∏∞
i=0 Ii[−1]

∏∞
i=0 Ii[−1] I

∏∞
i=0 Ii

qis

id−shift

qis qis

id−shift

where the rows are distinguished triangles by definition of homotopy limit and by Example 17.10(ii).
By (S6) and Proposition 12.3(i), the dashed arrow exists and is a quasi-isomorphism. This finishes
the proof.

Remark 17.12. The assumption that A be AB4* covers a large class of abelian categories of
interest, like the category of modules over a ring. However, there are also many interesting abelian
categories in which infinite products are not exact. This generally happens for various categories of
sheaves on a topological space or a scheme.

It turns out that basically all abelian categories of interest are Grothendieck, i.e., they contain
a generator, all colimits exist, and the formation of filtered colimits is exact. There is an analog of
Theorem 17.11 for Grothendieck abelian categories, which we will explain in Theorem 24.10.





Chapter 5

Spectral Sequences

§18. Definition of spectral sequences

Doing computations in the derived category is usually very easy and conceptual. It is often necessary
to extract information in terms of the abelian level. We have two examples in mind:

• Let X ∈ C∗(A) be a complex and RF : D∗(A) → D(B) a derived functor. Can we compute
Hn(RF (X)) in terms of the RnF and Hn(X) (or even Xn)?

• Let F : A → B and G : B → C be left exact functors and X ∈ K+(A). Can we compute
Hn(RG(RF (X))) in terms of the higher derived functors of G and F?

The computational tool that allows us to treat these problems is called a spectral sequence. We
first point out that the second of the above questions is related to the computation of the derived
functor of a composition of two functors, namely, we have the following result:

Proposition 18.1. Let A,B, C be abelian categories, let ∗, † ∈ {∅, b,+,−}. Let F : K∗(A)→ K†(B)
and G : K†(B)→ K(C) be exact functors. Suppose that the following conditions are satisfied:

(a) There exist full subcategories L ⊆ K∗(A) and M ⊆ K†(B) satisfying the hypotheses of Theo-
rem 15.1 for F and G, respectively.

(b) F (L) ⊆M.

Then the canonical map

R(G ◦ F ) ∼−→ RG ◦ RF

is an isomorphism of functors D∗(A)→ D(C).

Proof. It follows from (a), (b) and Theorem 15.1 that the right derived functors RF : D∗(A)→ D†(B),
RG : D†(B)→ D(C), and R(G ◦ F ) : D∗(A)→ D(C) exist. We obtain from the universal property of
the derived functor a unique map α : R(G ◦ F ) −→ RG ◦ RF making the diagram

QCGF R(G ◦ F )QA

QCGF R(G)QBF R(G)R(F )QA

αQA

107
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of functors K∗(A) → D(C) commutative. Note that, applied to objects of L, the horizontal maps
in the diagram are isomorphisms, because F (L) ⊆ M. Hence, for all L ∈ L the map αQAL is an
isomorphism. Now, for any X ∈ K∗(A), choose a quasi-isomorphism X → L with L ∈ L. Then we
have a commutative diagram

R(G ◦ F )(QAX) (RG ◦ RF )(QAX)

R(G ◦ F )(QAL) (RG ◦ RF )(QAL),

∼

αQAX

∼

∼
αQAL

which implies that αQAX is an isomorphism. As QA is essentially surjective, we deduce that α is
an isomorphism as desired.

We now introduce the notion of a spectral sequence.

Definition 18.2. Let A be an abelian category. A spectral sequence consists of the following data:

(a) a family {Epqr }r≥a,p,q∈Z of objects of A (for some a ≥ 0);

(b) differentials dpqr : Epqr → Ep+r,q−r+1
r , i.e., maps satisfying dp+r,q−r+1

r ◦ dpqr = 0 for all p, q, r;

(c) isomorphisms αpqr : Epqr+1
∼−→ Ker(dpqr )/ Im(dp−r,q+r−1

r ).

The total degree of Epqr is defined to be p+ q. We call Er = {Epqr }p,q the r-th page of the spectral
sequence.

A morphism f : E → E′ of spectral sequences consists of maps fpqr : Epqr → E′pqr commuting
with the differentials (i.e., d′pqr fpqr = fp+r,q−r+1

r dpqr ) such that the diagrams

Epqr+1 E′pqr+1

Ker(dpqr )/ Im(dp−r,q+r−1
r ) Ker(d′pqr )/ Im(d′p−r,q+r−1

r )

fpqr+1

αpqr ∼ α′pqr∼

fpqr

commute for all r, p, q.
We point out the following immediate observations:

• Epqr+1 is a subquotient of Epqr .

• the differentials dpqr increase the total degree by 1.
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We illustrate the spectral sequence for its first pages:

p

q

E0
p

q

E1

p

q

E2

Definition 18.3. A spectral sequence E = {Epqr }r≥a,p,q is called bounded if for all n there are only
finitely many (p, q) with p+ q = n and Epqa 6= 0. Note that in this case the differentials dpqr vanish
for fixed p, q and r � 0, and hence Epqr ∼= Epqr+1

∼= · · · . We denote by Epq∞ = Epqr this stable value
of Epqr .

We say that a bounded spectral sequence E converges to H = {Hn}n∈Z if each Hn ∈ A admits
a finite descending filtration

0 = F sHn ⊆ F s−1Hn ⊆ · · · ⊆ F tHn = Hn

such that Epq∞ ∼= F pHp+q/F p+1Hp+q for all p, q. We denote convergence by writing

Epqa =⇒ Hp+q.

Example 18.4. (a) Let A be an abelian category. Every first quadrant spectral sequence E =
{Epqr }p,q≥0 is bounded; every third quadrant spectral sequence E = {Epqr }p,q≤0 is bounded.

(b) Let G be a finite group and N E G a normal subgroup. The Lyndon–Hochschild–Serre spectral
sequence is a converging first quadrant spectral sequence

Epq2 = Hp(G/N,Hq(N,A)) =⇒ Hp+q(G,A)
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for any G-representation A. It is a special case of the Grothendieck spectral sequence, which
we will prove later (see Theorem 20.10).

§19. Construction of spectral sequences

Classically, spectral sequences were constructed from filtered chain complexes. We will follow the
exposition in [Ben91], but will work in slightly greater generality.

We start by introducing the notion of an “exact couple”, which is the abstract machine which
constructs for us spectral sequences.

Definition 19.1 (Massey). Let A be an abelian category. An exact couple is a tuple (D,E, i, j, k)

consisting of objects D,E ∈ A and morphisms D i−→ D
j−→ E

k−→ D such that

Ker(i) = Im(k), Ker(j) = Im(i), Ker(k) = Im(j).

Since k ◦ j = 0, the map d := j ◦ k : E → E defines a differential on E. We define its cohomology
object to be

H(E, d) := Ker(d)/ Im(d).

We visualize an exact couple as a triangle

D D

E.

i

jk

Lemma 19.2. Let A be an abelian category and (D,E, i, j, k) an exact couple. We put

D′ := Im(i) ⊆ D,
E′ := H(E, d) as a subquotient of E,

and define maps D′ i
′

−→ D′
j′−→ E′

k′−→ D′ by the commutativity of the diagram

E Im(d)

Im(i) D Ker(d) Ker(j) Im(i)

D′ D′ E′ D′.

k

d

i

j k

i′ j′ k′

Then (D′, E′, i′, j′, k′) defines an exact couple, called the derived couple of (D,E, i, j, k).

Proof. From the construction it is clear that Im(i′) ⊆ Ker(j′), Im(j′) ⊆ Ker(k′), and Im(k′) ⊆
Ker(i′). A diagram chase shows that these inclusions are epimorphisms, hence isomorphisms.
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Lemma 19.3. Let (D,E, i, j, k) be an exact couple with differential d = j◦k. For r ≥ 2 we denote by
(Dr, Er, ir, jr, kr) the (r−1)-th derived couple with differential dr = jr ◦kr. Put Zr := k−1(Im(ir−1))
and Br := j(Ker(ir−1)) as subobjects of E. Then there are canonical isomorphisms

Er ∼= Zr/Br, Br/Br−1
∼= Im(dr−1), Zr/Br−1

∼= Ker(dr−1).

Proof. We prove the claim by induction on r. The case r = 1 is trivial. So let r = 2. Then

B2 = j(Ker(i)) = j(Im(k)) = Im(j ◦ k) = Im(d),

Z2 = k−1(Im(i)) = k−1(Ker(j)) = Ker(j ◦ k) = Ker(d),

so that Z2/B2
∼= E2. Let now r > 2 and suppose that the claim is true for r − 1 and every exact

couple. Consider the commutative diagram

D Zr Im(i)

D2 Zr/B2 D2.

i

j

π

k

j2 k2

We compute

Z̃r−1 := k−1
2 (Im(ir−2

2 )) = πk−1
(
Im(ir−1)

)
= π(Zr) = Zr/B2,

B̃r−1 := j2
(
Ker(ir−2

2 )
)

= j2i
(
Ker(ir−1)

)
= πj

(
Ker(ir−1)

)
= π(Br) = Br/B2.

Hence, by the induction hypothesis for (D2, E2, i2, j2, k2), we deduce

Zr/Br ∼=
Zr/Br−1

Br/Br−1

∼= Ker(dr−1)/ Im(dr−1) = Er,

Br/Br−1
∼=

Br/B2

Br−1/B2

∼= B̃r−1/B̃r−2
∼= Im(d̃r−2) = Im(dr−1),

Zr/Br−1
∼=

Zr/B2

Br−1/B2

∼= Z̃r−1/B̃r−2
∼= Ker(d̃r−2) = Ker(dr−1).

Remark 19.4. Classically, spectral sequences are obtained from a filtration on a chain complex.
Recall that if C ∈ C(A) is a complex with descending filtration

· · · ⊆ F p+1C ⊆ F pC ⊆ F p−1C ⊆ · · · ⊆ C

we may look at the associated graded complexes grp C := F pC/F p+1C. The idea of the spectral
sequence associated with F •C is to approximate the cohomology of C with the cohomologies of the
associated graded complexes grp C: We then want to build a convergent spectral sequence

Ep,q2 = Hp+q(grp C) =⇒ Hp+q(C).

The construction requires us to also consider the complexes F pC/F qC for q ≥ p. Now, it is
sometimes more useful to construct the necessary data directly in the derived category. This
motivates the following definition:
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Definition 19.5. Let A be an abelian category. Let I0 = Z ∪ {±∞} with the obvious partial
ordering and consider partially ordered set

I =
{

(p, q) ∈ I2
0

∣∣ p ≤ q}
with partial ordering (p, q) ≤ (r, s) if p ≤ r and q ≤ s. A (descending) filtered object in D(A) is a
functor

X : Iop → D(A)

together with maps δp,q,r : X(p, q)→ X(q, r)[1] for all p ≤ q ≤ r satisfying the following conditions:

• X(p, p) = 0 for all p.

• For all p ≤ q ≤ r the triangle X(q, r)→ X(p, r)→ X(p, q)
δp,q,r−−−→ X(q, r)[1] is distinguished.

• For all p ≤ q ≤ r ≤ s the induced diagram

(19.1)
X(q, s) X(p, s) X(p, q) X(q, s)[1]

X(q, r) X(p, r) X(p, q) X(q, r)[1]

δp,q,s

δp,q,r

is a morphism of (distinguished) triangles.

In particular, if we define X(p) := X(p,∞), then we obtain a chain of maps

· · · → X(p+ 1)→ X(p)→ X(p− 1)→ · · · → X(−∞),

in D(A), which we view as a descending filtration of X(−∞). Moreover, we recover the terms
X(p, q) via the distinguished triangles

X(q)→ X(p)→ X(p, q)→ X(q)[1]

for all p ≤ q in Z.

Example 19.6. Let A be an abelian category and C ∈ C(A) a complex together with a filtration

0 ⊆ · · · ⊆ F p+1C ⊆ F pC ⊆ F p−1C ⊆ · · · ⊆ C

by subcomplexes. Putting F∞C := 0 and F−∞C := C, we obtain a filtered object of D(A) via
X(p, q) := Q(F pC/F qC) for all p ≤ q. Indeed, observe that for all p ≤ q ≤ r ≤ s we have a
morphism of short exact sequences

0 F qC/F sC F pC/F sC F pC/F qC 0

0 F qC/F rC F pC/F rC F pC/F qC 0,

and then Example 12.4 gives the map of distinguished triangles (19.1).
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Example 19.7. Let A be an abelian category. As a special case of Example 19.6 we obtain the
following filtered objects in D(A):

(a) Let C ∈ C(A) with filtration given by F pC := τ≤−pC. For the induced filtered object X in
D(A) we then have

X(p, q) = Q(τ>−qτ≤−pC)

in D(A), whose cohomologies are concentrated in degrees [−q + 1, . . . ,−p]. In particular, we
have X(p, p+ 1) = H−p(C)[p].

(b) Let C ∈ C(A) with filtration given by F pC := σ≥pC. For the induced filtered object X in
D(A) we then have

X(p, q) = Q(σ<qσ≥pC)

in D(A), whose cohomologies are concentrated in degrees [p, . . . , q− 1]. In particular, we have
X(p, p+ 1) = Cp[−p].

Example 19.8. If X is a filtered object of D(A) and F : D(A)→ D(B) is an exact functor between
derived categories, then F ◦X is a filtered object of D(B).

Using exact couples and their derived couples we can now construct spectral sequences:

Construction 19.9. Let A be an abelian category and X(−,−) a filtered object of D(A). The
long exact sequences

· · · → Hn(X(p+ 1))
i1−→ Hn(X(p))

j1−→ Hn(X(p, p+ 1))
k1−→ Hn+1(X(p+ 1))→ · · ·

fit into a large diagram

Hn−1(X(p+ 1)) Hn−1(X(p+ 1, p+ 2)) Hn(X(p+ 2)) Hn(X(p+ 2, p+ 3))

Hn−1(X(p)) Hn−1(X(p, p+ 1)) Hn(X(p+ 1)) Hn(X(p+ 1, p+ 2))

Hn−1(X(p− 1)) Hn−1(X(p− 1, p)) Hn(X(p)) Hn(X(p, p+ 1))

k1

i1

j1 k1

i1

j1 k1

We now put

Epq1 := Hp+q(X(p, p+ 1)), Dpq
1 := Hp+q(X(p))

and visualize them in a triangular shape,

D•,•1 D•,•1

E•,•1 ,

i1

j1k1
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where

deg(i1) = (−1, 1), deg(j1) = (0, 0), deg(k1) = (1, 0),

and

Ker(i1) = Im(k1), Ker(j1) = Im(i1), Ker(k1) = Im(j1).

We define the exact couple (Dr, Er, ir, jr, kr) as the (r−1)-th derived couple of of (D1, E1). The
sequence {(Er, dr)}r≥1 is the spectral sequence of the original exact couple (D1, E1). We keep track
of the double grading

deg(ir) = deg(ir−1),

deg(jr) = deg(jr−1)− deg(ir−1),

deg(kr) = deg(kr−1),

deg(dr) = deg(jr) + deg(kr),

so that, by induction,

deg(ir) = (−1, 1),

deg(jr) = (r − 1,−r + 1),

deg(kr) = (1, 0),

deg(dr) = (r,−r + 1).

Fix p, q. Note that Dpq
r+1 ⊆ Dpq

r ⊆ Dpq
1 for all r, and we put Dpq

∞ :=
⋂
r≥1D

pq
r . Each Epqr is a

subquotient of Epq1 , hence we find subobjects Bpqr , Zpqr ⊆ E
pq
1 such that

Epqr = Zpqr /B
pq
r .

By the construction and Lemma 19.3 we have

Epq1 = Zpq1 ⊇ Z
pq
2 ⊇ · · · ⊇ Zpqr ⊇ · · · ⊇ Bpqr ⊇ · · · ⊇ B

pq
2 ⊇ B

pq
1 = 0,

where Zpqr /B
pq
r−1 = Ker(dpqr−1) and Bpqr /B

pq
r−1 = Im(dp−r,q+r−1

r−1 ). We put Bpq∞ :=
⋃
r B

pq
r and

Zpq∞ :=
⋂
r Z

pq
r . Note that Bpq∞ ⊆ Zpq∞ , so that the object

Epq∞ := Zpq∞/B
pq
∞

is well-defined. We make the following simplifying assumptions:

(∗) For fixed p, q and n� 0, we have

Hp+q(X(p+ n)) = 0, and

Hp+q(X(p− n)) ∼−→ Hp+q(X(−∞))

is an isomorphism.

Proposition 19.10. The following equalities hold:
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(i) Zpqn = Im
(
Hp+q(X(p, p+ n))→ Hp+q(X(p, p+ 1))

)
= Ker

(
Hp+q(X(p, p+ 1))

∂−→ Hp+q+1(X(p+ 1, p+ n))
)
.

(ii) Bpqn = Im
(
Hp+q−1(X(p− n+ 1, p))

∂−→ Hp+q(X(p, p+ 1))
)

= Ker
(
Hp+q(X(p, p+ 1))→ Hp+q(X(p− n+ 1, p+ 1))

)
.

Remark 19.11. Observe that the assumption (∗) and Proposition 19.10 imply that, for fixed p, q
and n� 0:

Zpqn = Zpqn+1 = · · · = Zpq∞ = Im
(
Hp+q(X(p))→ Epq1

)
Bpqn = Bpqn+1 = · · · = Bpq∞ = Im

(
Hp+q−1(X(−∞, p))→ Epq1

)
,

where Epq1 = Hp+q(X(p, p+ 1)).

Proof of Proposition 19.10. For part (i), we consider the diagram

X(p+ n)

X(p+ 1) X(p) X(p, p+ 1) X(p+ 1)[1]

X(p+ 1, p+ n) X(p, p+ n) X(p, p+ 1) X(p+ 1, p+ n)[1]

(i1)n−1

k1

̃1

∂

which commutes by (19.1). Applying Hp+q to the bottom row, we obtain an exact sequence

Hp+q(X(p, p+ n))
α−→ Hp+q(X(p, p+ 1))

∂−→ Hp+q+1(X(p+ 1, p+ n))

and the claim is that Zpqn = Im(α) = Ker(∂). We consider the following commutative diagram

Hp+q+1(X(p+ n))

Hp+q(X(p, p+ 1)) Hp+q+1(X(p+ 1))

Hp+q+1(X(p+ 1, p+ n)).

(i1)n−1

k1

∂

̃1

By Lemma 19.3 we have

Zpqn = k−1
1 (Im(in−1

1 )) = k−1
1 (Ker(̃1)) = Ker(̃1 ◦ k1) = Ker(∂) = Im(α)

as desired.
Part (ii) works similarly. We instead consider the morphism of distinguished triangles

X(p) X(p− n+ 1) X(p− n+ 1, p) X(p)[1]

X(p, p+ 1) X(p− n+ 1, p+ 1) X(p− n+ 1, p) X(p, p+ 1)[1].

(i1)n−1
k̃1

j1

∂
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Applying Hp+q−1 to the bottom row, we obtain an exact sequence

Hp+q−1(X(p− n+ 1, p))
∂−→ Hp+q(X(p, p+ 1))

β−→ Hp+q(X(p, p+ 1))

and the claim is that Bpqn = Im(∂) = Ker(β). We consider the following commutative diagram

Hp+q−1(X(p− n+ 1, p))

Hp+q(X(p)) Hp+q(X(p, p+ 1))

Hp+q(X(p− n+ 1)),

k̃1

∂

(i1)n−1

j1

By Lemma 19.3 we have

Bpqn = j1(Ker(in−1
1 )) = j1(Im(k̃1)) = Im(∂) = Ker(β)

as desired.

We will need the following general lemma:

Lemma 19.12. Consider a commutative diagram

D

A B C

h
k

f g

in an abelian category A, where the bottom row is exact. Then g induces an isomorphism

g : Im(h)/ Im(f) ∼−→ Im(k).

Proof. Compute

Im(h)

Im(f)
=

Im(h)

Ker(g)
∼−→ Im(gh) = Im(k).

Proposition 19.13. We have an isomorphism

Epqn
∼= Im

(
Hp+q(X(p, p+ n))→ Hp+q(X(p− n+ 1, p+ 1))

)
.

Proof. Consider the commutative diagram

Hp+q(X(p, p+ n))

Hp+q−1(X(p− n+ 1, p)) Hp+q(X(p, p+ 1)) Hp+q(X(p− n+ 1, p+ 1)),

h

f g
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where the commutativity of the left triangle comes from the commutativity of (19.1) applied to

X(p, p+ n) X(p− n+ 1, p+ n) X(p− n+ 1, p) X(p, p+ n)[1]

X(p, p+ 1) X(p− n+ 1, p+ 1) X(p− n+ 1, p) X(p, p+ 1)[1].

By Proposition 19.10 we have Zpqn = Im(h) and Bpqn = Im(f), hence the claim follows from
Lemma 19.12.

Letting n go to infinity, we obtain the following consequence:

Corollary 19.14. We have Epq∞ = Im
(
Hp+q(X(p))→ Hp+q(X(−∞, p+ 1))

)
.

Proof. Apply Proposition 19.13 and assumption (∗).

Definition 19.15. Put

F pHp+q(X(−∞)) := Im
(
Hp+q(X(p))→ Hp+q(X(−∞))

)
.

We summarize the previous discussion in the following theorem:

Theorem 19.16. Let A be an abelian category and X : Iop → D(A) a filtered object (see Defini-
tion 19.5. Suppose that the following condition is satisfied:

• For all fixed p, q and n� 0, the map Hp+q(X(p− n)) ∼−→ Hp+q(X(−∞)) is an isomorphism
and Hp+q(X(p+ n)) = 0.

Then there is a converging spectral sequence

Epq1 = Hp+q(X(p, p+ 1)) =⇒ Hp+q(X(−∞)).

Proof. Following the discussion, it remains to prove that we have an isomorphism

Epq∞
∼= F pHp+q(X(−∞))/F p+1Hp+q(X(−∞)).

To see this, apply Lemma 19.12 to the diagram

Hp+q(X(p))

Hp+q(X(p+ 1)) Hp+q(X(−∞)) Hp+q(X(−∞, p+ 1)).

In the special case of a first quadrant spectral sequence we can extract more structure.
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Construction 19.17 (edge maps). Let

Epq2 =⇒ Hp+q

be a convergent first quadrant spectral sequence, that is, Epq2 = 0 provided p < 0 or q < 0.
Then the differentials into E0q

r and out of Ep0r are zero for all r ≥ 2. In other words, we have
inclusions

E0q
∞ ⊆ · · · ⊆ E

0q
r+1 ⊆ E0q

r ⊆ · · · ⊆ E
0q
2

and quotient maps

Ep02 →→ · · · →→ Ep0r →→ Ep0r+1 →→ · · · →→ Ep0∞

Now, Hn has a filtration 0 = Fn+1Hn ⊆ FnHn ⊆ · · · ⊆ F 1Hn ⊆ F 0Hn = Hn such that
Ep,n−p∞

∼= F pHn/F p+1Hn. Hence, we obtain maps

Hq →→ F 0Hq/F 1Hq ∼= E0q
∞ ↪→ E0q

2

and

Ep02 →→ Ep0∞
∼= F pHp ⊆ Hp,

which are called the edge maps of the spectral sequence. In low degrees we obtain a five-term exact
sequence

0→ E10
2 → H1 → E01

2

d01
2−−→ E20

2 → H2.

In fact, there is even a seven-term exact sequence

0→ E10
2 → H1 → E01

2

d01
2−−→ E20

2 → Ker(H2 → E02
2 )→ E11

2

d11
2−−→ E30

2 .

§20. Examples of Spectral Sequences

Let us look at examples of spectral sequences in order to get a feeling for them.

Example 20.1. Let A be an abelian category. Let X f−→ Y be a morphism in D(A), which gives
rise to a distinguished triangle X → Y → Z → X[1]. We view f as a filtered object by putting

X(p) =


0, if p ≥ 2,
X, if p = 1,
Y, if p ≤ 0.
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The page Epq1 = Hp+q(X(p, p+ 1)) and Epq2 are then given by

p

q

H0(Z) H1(X)

H1(Z) H2(X)

H2(Z) H3(X)

H−1(Z) H0(X)

d0

d1

d2

d−1

Epq1 :

p

q

Ker(d0) Coker(d0)

Ker(d1) Coker(d1)

Ker(d2) Coker(d2)

Ker(d−1) Coker(d−1)

Epq2 :

Note that the spectral sequence is concentrated in the 0th and 1st column. The differentials of Epq2

are all zero, hence Epq2 = Epq∞ . The convergence means that we have short exact sequences

0 E1,n−1
∞ Hn(Y ) E0,n

∞ 0

Coker(dn−1) Ker(dn)

for n ∈ Z. We can splice them together to recover the long exact sequence in cohomology:

· · · −→ Hn−1(Z)
dn−1−−−→ Hn(X) −→ Hn(Y ) −→ Hn(Z)

dn−→ Hn+1(X) −→ · · ·

Observe that the spectral sequence allows us to compute Hn(Y ) from the cohomologies Hn(X)
and Hn(Z) only up to extensions!

20.1 The spectral sequence of a double complex

Definition 20.2. Let A be an additive category.

(i) A double complex consists of a tuple (A•,•, d•,•v , d•,•h ) consisting of objects Ai,j and maps
di,jv : Ai,j → Ai,j+1 and di,jh : Ai,j → Ai+1,j such that di,j+1

v ◦ di,jv = di+1,j
h ◦ di,jh = 0 and
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di+1,j
v ◦ di,jh = di,j+1

h ◦ di,jv . We depict the double complex as a lattice

...
...

...

· · · Ai−1,j+1 Ai,j+1 Ai+1,j+1 · · ·

· · · Ai−1,j Ai,j Ai+1,j · · ·

· · · Ai−1,j−1 Ai,j−1 Ai+1,j−1 · · ·

...
...

...

di−1,j+1
h di,j+1

h

di−1,j
h

di−1,j
v

di,jh

di,jv di+1,j
v

di−1,j−1
h

di−1,j−1
v

di,j−1
h

di,j−1
v di+1,j−1

v

Note that a double complex is simply an object of C(C(A)).
We call A•,• bounded if for all n ∈ Z there are only finitely many pairs (p, q) with p+ q = n
and Ap,q 6= 0. For example, every first quadrant or third quadrant double complex is bounded.

(ii) Suppose that A admits infinite direct sums and let A•,• be a double complex. We de-
note by (Tot(A)•, d•) the complex defined by Tot(A)n :=

⊕
p,q

p+q=n
Ap,q with differentials

dn : Tot(A)n → Tot(A)n+1 given by

dn =
∑
p,q

p+q=n

dp,qh + (−1)pdp,qv .

We call Tot(A)• the total complex of A•,•.

Exercise 20.3. Let A be an additive category and A•,• a double complex. Let B•,• be the double
complex given “transposing”, i.e., Bi,j = Aj,i, di,jB,h = dj,iA,v and di,jB,v = dj,iA,h. Show that there is an
isomorphism

Tot(A•,•) ∼−→ Tot(B•,•)

in C(A).

Notation 20.4. Let A be an abelian category and A•,• a double complex in A. For each fixed
p ∈ Z, we have a complex (Ap,•, dv) in A with cohomology Hq

v(A
p,•) ∈ A. These objects assemble

into a complex (
Hq
v(A

•,•), dh
)
∈ C(A)
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for each q ∈ Z. We similarly denote by
(
Hp
h(A•,•), dv

)
∈ C(A) the complex assembled from the

cohomologies Hp
h(A•,q) of the complexes (A•,q, dh), for q ∈ Z.

Proposition 20.5. Let A be an abelian category. Let A•,• be a bounded double complex in A.
Then there exist two convergent spectral sequences

IE
p,q
1 = Hq

v(A
p,•) =⇒ Hp+q(Tot(A))

IIE
p,q
1 = Hq

h(A•,p) =⇒ Hp+q(Tot(A)),

where dp,q1 : IE
p,q
1 → IE

p+1,q
1 is induced by dh and dp,q1 : IIE

p,q
1 → IIE

p+1,q
1 is induced by dv.

Proof. Consider the “column filtration” given by F p Tot(A) := Tot(σ≥p,•A) ⊆ Tot(A). Concretely,
we have F p Tot(A)n =

⊕
i+j=n
i≥p

Ai,j as a subcomplex of Tot(A), which we may visualize as

0

0

0

0

0

0

0

0

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

≥ p

Note that for fixed n we find p0 such that Ap,n−p = 0 for all p < p0 by our assumption that A•,•
is bounded. Hence Hn(F p Tot(A)) ∼−→ Hn(Tot(A)) is an isomorphism for all p < p0. Moreover, it
is clear that Hn(F p Tot(A)) = 0 whenever p > n. We may thus apply Theorem 19.16 and obtain a
convergent spectral sequence

Epq1 = Hp+q(X(p, p+ 1)) =⇒ Hp+q(Tot(A)),

whereX denotes the filtered object associated with F • Tot(A). Note thatX(p, p+1) = X(p)/X(p+1)
identifies with the complex (Ap,•−p, (−1)pdv). We compute Epq1 = Hp+q(X(p, p + 1)) = Hq

v(A
p,•),

and the differential d1 : Hq
v(A

p,•)→ Hq
v(A

p+1,•) is induced by dh.
The second spectral sequence is obtained by applying the first result to the transposed double

complex from Exercise 20.3, or by considering the “row filtration” X(p) = Tot(σ•,≥pA) instead. The
details are left to the reader.

As an application, we can compute injective resolutions of (bounded below) complexes:
Exercise 20.6. Let A be an abelian category with enough injectives. Let

A• = [· · · → 0→ 0→ A0 → A1 → A2 → · · · ]

be a complex concentrated in degrees ≥ 0.

(i) Construct a double complex I•,• such that Ap → Ip,• is an injective resolution for all p. (Hint:
split A• into short exact sequences 0→ Zi → Ai → Bi+1 → 0 and 0→ Bi → Zi → Hi(A)→ 0
for all i ≥ 0, where Zi = Ker(di) and Bi = Im(di−1). Use injective resolutions of the Bi and
Hi(A) and the Horseshoe lemma to construct injective resolutions of the Zi and Ai.)

(ii) Show that the natural map f : A• → Tot(I)• is a quasi-isomorphism. (Hint: Show first that
the mapping cone of f is the total complex of the double complex Ĩ•,• with Ĩpq = Ipq for all
p, q ≥ 0, Ĩp,−1 = Ap for all p, and Ĩpq = 0 otherwise.)

Exercise 20.7. Prove the snake lemma and the five lemma using spectral sequences.
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20.2 The Grothendieck spectral sequence

We introduce some notation.

Notation 20.8. Let D(A) be the derived category of an abelian category A.

(1) For any n ∈ Z we let D≤n(A) ⊆ D(A) be the full subcategory spanned by the objects X such
that Hi(X) = 0 for all i > n (equivalently, τ≤nX ∼−→ X).

We similarly define D≥n(A) ⊆ D(A) as the full subcategory spanned by the objects X such
that Hi(X) = 0 fo all i < n (equivalently, X ∼−→ τ≥nX). Observe that

D−(A) =
⋃
n∈Z

D≤n(A), and D+(A) =
⋃
n∈Z

D≥n(A).

(2) An exact functor F : D(A) → D(B) is called left bounded if there exists n ∈ Z such that
F (D≥0(A)) ⊆ D≥n(B). If we can choose n = 0, then we call F left t-exact .

Similarly, F is called right bounded if there exists n ∈ Z such that F (D≤0(A)) ⊆ D≤n(B), and
if we can choose n = 0, then we call F right t-exact .

F is called bounded if it is both left and right bounded, and we calld F t-exact if F is both
left and right t-exact.

Proposition 20.9. Let A,B be abelian categories. Let F : D(A)→ D(B) be an exact functor between
derived categories and let C ∈ C(A). Suppose that one of the following conditions is satisfied:

• F is left bounded and C ∈ C+(A);

• F is right bounded and C ∈ C−(A);

• F is bounded;

• C ∈ Cb(A).

Then there exist convergent spectral sequences

Epq2 = (HpF )(Hq(C)) =⇒ Hp+q(F (C)) and

Epq1 = (HqF )(Cp) =⇒ Hp+q(F (C)).

Here, HpF : A → B denotes the composite A ↪→ D(A)
F−→ D(B)

Hp−−→ B.

Proof. Let us identify C with its image in D(A). Consider the filtration given by F pC := τ≤−pC
from Example 19.7, and denote the associated filtered object by X. As F is an exact functor,
the assignment (FX)(p, q) := F (X(p, q)) defines a filtered object in D(B). We first claim that
for fixed p, q and n � 0 the maps Hp+q(FX(p − n)) ∼−→ Hp+q(FX(−∞)) are isomorphisms and
Hp+q(FX(p+ n)) = 0.

• If C ∈ D≤a(A) for some a ∈ Z, then we have FX(p) = FC whenever p + a ≤ 0, and hence
Hp+q(FX(p− n)) = Hp+q(FX(−∞)) for n ≥ p+ a.

• If C ∈ D≥a(A) for some a ∈ Z, then X(p+ n) = τ≤−p−nC = 0 whenever −n− p < a.
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• If F is left bounded, say F (D≥0(A)) ⊆ D≥f0(B), then we have an exact sequence

Hp+q−1(FX(−∞, p− n))→ Hp+q(FX(p− n))→ Hp+q(FC)→ Hp+q(FX(−∞, p− n)).

As X(−∞, p− n) = τ>n−pC, we get Hp+q−1(FX(−∞, p− n)) = 0 = Hp+q(FX(−∞, p− n)),
and therefore Hp+q(FX(p− n)) ∼−→ Hp+q(FX(p− n− 1)) whenever n− p+ f0 ≥ p+ q.

• If F is right bounded, say F (D≤0(A)) ⊆ D≤f0(B), then Hp+q(FX(p + n)) = 0 whenever we
have f0 − p− n < p+ q.

Thus, under our hypotheses, we may apply Theorem 19.16 to conclude that there is a convergent
spectral sequence

Eij1 = Hi+j(FX(i, i+ 1)) =⇒ Hi+j(F (C)).

We compute Hi+j(FX(i, i + 1)) = Hi+j(F (H−i(C)[i])) = H2i+j(F )(H−i(C)). Now we make the
substitution (p, q) = (2i+j,−i), so that p+q = i+j. Under this new parametrization the differential
has bidegree (2,−1), hence our spectral sequence starts on the second page, i.e., we get

Epq2 = (HpF )(Hq(C)) =⇒ Hp+q(FC).

The same discussion applies mutatis mutandis if we consider the filtration F pC = σ≥pC instead.
In this case we have X(p, p+ 1) = Cp[−p] and hence we get a convergent spectral sequence

Epq1 = Hp+q(FCp[−p]) = (HqF )(Cp) =⇒ Hp+q(FC)

as desired.

Theorem 20.10 (Grothendieck spectral sequence). Let F : A → B and G : B → C be left exact
functors between abelian categories. Suppose that A and B have enough injectives and that F (I) is
G-acyclic for all injective objects I ∈ A.

Then for all A ∈ A there is a convergent first quadrant spectral sequence

Epq2 = RpG(RqF (A)) =⇒ Rp+q(G ◦ F )(A).

The edge maps are natural maps Rq(G ◦ F )(A) → G(RqF (A)) and RpG(F (A)) → Rp(G ◦ F )(A)
and we have a five-term exact sequence

0→ R1G(F (A))→ R1(G ◦ F )(A)→ G(R1F (A))→ R2G(F (A))→ R2(G ◦ F )(A).

Proof. By Proposition 18.1 we have an isomorphism R(G◦F ) ∼−→ RG◦RF of functors D+(A)→ D(C).
By Proposition 20.9 applied with F = RG and C = RF (A) we obtain the desired spectral sequence.
The edge maps and the five-term exact sequence are given in Construction 19.17.

Example 20.11 (Lyndon–Hochschild–Serre spectral sequence). Let k be a field, G a finite group
and N E G a normal subgroup. For every V ∈ Repk(G) we have V G = (V N )G/N . Since (−)N

is right adjoint to the exact functor Repk(G/N) → Repk(G) given by inflation/restriction along
G → G/N , it follows that (−)N preserves injective objects. Hence, in this case the Grothendieck
spectral sequence yields

Epq2 = Hp(G/N,Hq(N,V )) =⇒ Hp+q(G,V ),

where Hn(G,−) = Rn(−)G denotes group cohomology.
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Example 20.12 (Leray spectral sequence). Let f : X → Y be a continuous map between topological
spaces. The direct image functor f∗ : Shv(X,Ab) → Shv(Y,Ab) sends injective sheaves to flabby
sheaves, which are acyclic for the global sections functor Γ(Y,−). Note that Γ(Y, f∗(−)) = Γ(X,−).
Hence, the Grothendieck spectral sequence yields

Epq2 = Hp(Y,Rqf∗(F)) =⇒ Hp+q(X,F)

for any sheaf F ∈ Shv(X,Ab).
In other words, we can approximate the cohomology of F using the cohomologies of the higher

direct images Rqf∗(F).

Exercise 20.13. Let A be an abelian category satisfying AB3 (infinite direct sums exist). Suppose
that A has enough injective and enough projective objects. Show that the formation of infinite
direct sums in A is exact. (Hint: A direct argument works (even without the assumption that A
have enough projectives). For another argument consider the spectral sequence

Epq2 = ExtpA

(⊕(q)

i
Ai, B

)
=⇒

∏
i

Extp+qA (Ai, B),

where
⊕(q)

i denotes the q-th left derived functor of
⊕

i : AI → A.)



Chapter 6

The Brown Representability Theorem

The goal in this section is to give a proof of the Brown representability theorem for triangulated
catgeories. Its mean importance derives from the fact that it provides adjoint functor theorems. We
roughly follow the treatment in [Kra07].

§21. Coherent Functors

Let A be an additive category. In this section we will describe a process of universally adjoining
cokernels to A. This construction will then be used to define the “abelian hull” of A (under a mild
condition on A).

Definition 21.1. We call Mod(A) := Funadd(Aop,Ab) the category of additive functors Aop → Ab.
Note that limits and colimits in Mod(A) exist and are computed pointwise. It follows that

Mod(A) is an abelian category. The functor

Y : A → Mod(A),

A 7→ HomA(−, A)

is additive and fully faithful by the Yoneda lemma.

We recall the following universal property of Mod(A), which informally states that Mod(A) is
built from A by freely adjoining all colimits:

Theorem 21.2. Let A,B be additive categories, and suppose that B has all colimits. Then precom-
position with Y induces an equivalence of categories

Y∗ : Funcolim(Mod(A),B) ∼−→ Funadd(A,B),

where Funcolim denotes colimit preserving (additive) functors.

Proof. The quasi-inverse is given by left Kan extension. Note first that, since Y is fully faithful, we
obtain an adjunction

Y! : Funadd(A,B)� Funadd(Mod(A),B) :Y∗.

We need to prove the following statements:

125
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(a) Y! is fully faithful, i.e., the unit id ∼−→ Y∗Y! is an isomorphism.
(b) Y!(F ) : Mod(A)→ B preserves all colimits, for F ∈ Funadd(A,B).
(c) The restriction of Y∗ to Funcolim(Mod(A),B) is conservative.

Let us assume these statements and show how to prove the statement: By (b) we obtain an
adjunction Y! : Funadd(A,B) � Funcolim(Mod(A),B) : Y∗. By (a), the unit η : id ∼−→ Y∗Y! is an
isomorphism. It remains to show that the counit ε : Y!Y∗ → id is an isomorphism. But note that
the triangle identity says that the composite

Y∗ ηY∗−−→ Y∗Y!Y∗
Y∗ε−−→ Y∗

is the identity. It follows that Y∗ε is an isomorphism. As Y∗ is conservative by (c), we deduce that
ε is an isomorphism.

Part (a) follows from Corollary 13.16.
We now prove (b). Let F ∈ Funadd(A,B) and consider the functor

SingF : B → Mod(A),

B 7→ HomB(F (−), B).

We claim that SingF is a right adjoint of Y!F . For any M ∈ Mod(A) and B ∈ B we have natural
isomorphisms

Hom(M,SingF (B)) ∼= Hom
(
Hom(Y(−),M),HomB(F (−), B)

)
(Yoneda lemma)

∼= Hom
(
Hom(−,M),Y∗HomB(F (−), B)

)
(right Kan extension)

∼= Hom
(
Hom(−,M),HomB(Y!F (−), B)

)
∼= HomB

(
(Y!F )(M), B

)
.

The penultimate isomorphism holds, because Y!F is a pointwise Kan extension by Proposition 13.14.
It remains to prove (c). Let α : F → G be a natural transformation of colimit-preserving functors

F,G : Mod(A) → B such that Y∗(α) is an isomorphism. Let M ∈ Mod(A). By Lemma 13.13 the
canonical map

colim
(A,f)∈Y/M

Y(A) ∼−→M

is an isomorphism. Since F,G commute with colimits, the diagram

F (M) colim(A,f)∈Y/M Y∗(F )(A)

G(M) colim(A,f)∈Y/M Y∗(G)(A)

αM

∼

colimY∗(α)A∼

∼

is commutative. We deduce that αM is an isomorphism as desired.

Definition 21.3. Let A be an additive category. A functor F : Aop → Ab is called coherent if there
exist A,B ∈ A and an exact sequence

HomA(−, B)→ HomA(−, A)→ F → 0

in Mod(A). We denote by Coh(A) ⊆ Mod(A) the full subcategory of coherent functors.
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Definition 21.4. Let A be an additive category. We say that A has weak kernels if for all maps
A→ B in A there exists a map C → A such that the sequence

HomA(−, C)→ HomA(−, A)→ HomA(−, B)

in Mod(A) is exact.

Example 21.5. Every triangulated category has weak kernels by Proposition 4.7(ii).

The main result about coherent functors is the following:

Proposition 21.6. Let A be an additive category.

(i) The Yoneda embedding Y : A → Mod(A) factors through an embedding Yc : A → Coh(A).

(ii) Coh(A) is an additive category and is closed under cokernels in Mod(A). Moreover each
HomA(−, A) is projective and Coh(A) has enough projective objects.

(iii) Coherent functors Aop → Ab preserve all products (which exist in Aop).

(iv) If A has all direct sums, then Coh(A) has all direct sums and Yc preserves them.

(v) The category Coh(A) has the following universal property: Let B be an additive category in
which cokernels exist. Then precomposition with Yc induces an equivalence of categories

Y∗c : Funrex(Coh(A),B) ∼−→ Funadd(A,B),

where Funrex denotes additive functors which preserve cokernels.

(vi) Suppose that A has weak kernels. Then Coh(A) ⊆ Mod(A) is an abelian subcategory.

Proof. Part (i) is obvious.
Let us prove (ii). It is clear that Coh(A) is additive and that each HomA(−, A) is projective

(by the Yoneda lemma), so that Coh(A) has enough projectives. It remains to prove that Coh(A)
is closed under cokernels in Mod(A). Let ϕ : F → F ′ be a map in Coh(A) with cokernel F ′ → F ′′

in Mod(A). Choose presentations Y(B) → Y(A) → F → 0 and Y(B′) → Y(A) → F ′ → 0 and
consider the commutative diagram

HomA(−, B) HomA(−, B′) HomA(−, A⊕B′)

HomA(−, A) HomA(−, A′) HomA(−, A′)

F F ′ F ′′ 0;

g

f

the horizontal maps on the left can be chosen by the projectivity of HomA(−, A) and HomA(−, B).
The map f is obviously surjective, and a diagram chase shows that the image of g coincides with
the kernel of f . Hence F ′′ is coherent and a cokernel in Coh(A).

We now prove (iii). Let F be a coherent functor with presentation Y(B)→ Y(A)→ F → 0. Let
(Xi)i∈I be a family of objects in in A such that the direct sum

⊕
i∈I Xi exists. Then we have a

commutative diagram
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HomA

(⊕
i∈I Xi, B

)
HomA

(⊕
i∈I Xi, A

)
F
(⊕

i∈I Xi

)
0

∏
i∈I HomA(Xi, B)

∏
i∈I HomA(Xi, A)

∏
i∈I F (Xi) 0,

∼ ∼

so we conclude from the five lemma that F : Aop → Ab preserves all products (which exist in Aop).
For part (iv), assume that A has all direct sums and consider the commutative diagram

Hom
(
Yc
(⊕

i∈I Xi

)
, F
)

F
(⊕

i∈I Xi

)
∏
i∈I Hom

(
Yc(Xi), F

) ∏
i∈I F (Xi).

∼

∼

∼

We deduce that the left vertical map is an isomorphism, which shows that Yc preserves all direct
sums. Let now (Fi)i∈I be a family in Coh(A) with presentations Y(Bi) → Y(Ai) → Fi → 0. Put
F := Coker(Y(

⊕
i∈I Bi)→ Y(

⊕
i∈I Ai)). For all G ∈ Coh(A) we then have a commutative diagram

0 Hom(F,G) Hom(Yc
(⊕

i∈I Ai

)
, G) Hom(Yc

(⊕
i∈I Bi

)
, G)

0
∏
i∈I Hom(Fi, G)

∏
i∈I Hom(Yc(Ai), G)

∏
i∈I Hom(Yc(Bi), G).

∼ ∼

The five lemma shows that the left vertical map is an isomorphism, i.e., F is the direct sum of the
Fi in Coh(A). Note here that the direct sum is not formed pointwise!

We now prove (v). Choose an embedding j : B ↪→ B′ into a cocomplete category B′ such that j
preserves cokernels. For example B′ = Funadd(B,Abop) has the desired properties, where j is the
opposite Yoneda embedding given by j(B) = HomB(−, B)op : B → Abop. We have a commutative
diagram

Funadd(A,B) Funadd(Coh(A),B)

Funadd(A,B′) Funadd(Coh(A),B′),

Y∗c

Y∗c

where the vertical maps are fully faithful since j is fully faithful. Moreover, we have an adjunction

Yc! : Funadd(A,B′)� Funadd(Coh(A),B′) :Y∗c .

We first show that the essential image of Yc! lies in Funrex(Coh(A),B′). We denote by i : Coh(A) ↪→
Mod(A) the inclusion, which commutes with cokernels by (ii). Again by Corollary 13.16 we know
that the unit id ∼−→ i∗i! is an isomorphism. Now, let F : A → B′ be an additive functor. Then
Y!F : Mod(A)→ B′ preserves all colimits, hence its restriction i∗Y!F = i∗i!Yc!F ∼= Yc!F preserves
cokernels as desired.
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As every coherent functor is a cokernel of representables and B is admits cokernels which are
preserved by j, it follows that Yc! restricts to a functor Funadd(A,B)→ Funrex(Coh(A),B). Hence,
we obtain an adjunction

Yc! : Funadd(A,B)� Funrex(Coh(A),B) :Y∗c .

Again, Yc! is fully faithful by Corollary 13.16, and Y∗c is conservative by the five lemma. As in the
proof of Theorem 21.2 we deduce that Yc! is an equivalence of categories with quasi-inverse Y∗c .

We finally prove (vi). We will show that Coh(A) ⊆ Mod(A) is an abelian subcategory. By (ii),
Coh(A) is closed under cokernels. It remains to prove that Coh(A) is closed under kernels. So let
0→ F ′ → F → F ′′ be an exact sequence in Mod(A) with F, F ′′ ∈ Coh(A). We will prove that F ′ is
coherent. Let HomA(−, B)→ HomA(−, A)→ F → 0 and HomA(−, B′′)→ HomA(−, A′′)→ F ′′ →
0 be presentations of F and F ′′, respectively, and consider the following commutative diagram:

HomA(−, B) HomA(−, B′′)

HomA(−, A) HomA(−, A′′)

0 F ′ F F ′′ 0,

where the horizontal maps can be chosen, because HomA(−, A) and HomA(−, B) are projective by
(ii). Since A has weak kernels, we find A′ ∈ A and a map A′ → A ⊕ B′′ such that the sequence
HomA(−, A′)→ HomA(−, A⊕B′′)→ HomA(−, A′′) is exact. Similarly, we find B′ ∈ A and a map
B′ → A′ ⊕ B such that the sequence HomA(−, B′) → HomA(−, A′ ⊕ B) → HomA(−, A) is exact.
A diagram chase then shows that

HomA(−, B′)→ HomA(−, A′)→ F ′ → 0

is exact, i.e., F ′ is coherent.

Exercise 21.7. Let A be an abelian category and suppose that A has enough projective objects. Let
P ⊆ A be the full subcategory of projective objects. Show that the functor

A ∼−→ Coh(P),

A 7→ HomA(−, A)
∣∣
P

is an equivalence of categories.

§22. The Abelianization of a Triangulated Category

Proposition 22.1. Let (C, T ) be a triangulated category.

(i) The category Coh(C) is abelian and the Yoneda functor Yc : C → Coh(C) is cohomological.
(ii) Let A be an abelian category. Then precomposition with Yc induces an equivalence

Y∗c : Funex(Coh(C),A) ∼−→ Funcoh(C,A)

of categories, where Funcoh is the category of cohomological functors and Funex denotes exact
functors (between abelian categories).
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Proof. A weak kernel of a map g : Y → Z in C is a map f : X → Y sitting in a distinguished triangle
X

f−→ Y
g−→ Z

h−→ T (X), because by Proposition 4.7(ii) the sequence

· · · → HomC(C,X)→ HomC(C, Y )→ HomC(C,Z)→ HomC(C, T (X))→ · · ·

is exact for every C ∈ C. Hence, by Proposition 21.6(vi) Coh(C) is abelian, and clearly Yc : C →
Coh(C) is cohomological.

It remains to prove (ii). By Proposition 21.6(v) we have an equivalence of categories

Y∗c : Funrex(Coh(C),A) ∼−→ Funadd(C,A).

Since Yc : C → Coh(C) is cohomological, it is clear that for any exact functor H : Coh(C)→ A, the
composed functor H ◦ Yc is cohomological. Conversely, let H : C → A be a cohomological functor,
and let H : Coh(C)→ A be a right exact functor such that H ◦ Yc ∼= H. We need to show that H
is also left exact. To this end, let 0→ F ′ → F → F ′′ → 0 be a short exact sequence in Coh(C). We
may then construct a commutative diagram

0 Yc(C ′) Yc(C) Yc(C ′′) 0

0 Yc(B′) Yc(B) Yc(B′′) 0

0 Yc(A′) Yc(A) Yc(A′′) 0

0 F ′ F F ′′ 0,

where the first three rows are split exact (as every Yc(X) is projective), and where C ′′ f−→ B′′ →
A′′ → T (C ′′) is a distinguished triangle in C. Applying H and using H ◦ Yc ∼= H, we obtain a
commutative diagram

H(C) H(C ′′) 0

0 H(B′) H(B) H(B′′) 0

0 H(A′) H(A) H(A′′) 0

H(F ′) H(F ) H(F ′′) 0

where the rows and the first and third columns are exact, and where the second column is a complex
which is exact at H(A). A diagram chase now shows that H(F ′)→ H(F ) is injective, hence H is
exact.
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Proposition 22.2. Let (C, T ) be a triangulated category. Then there is a canonical equivalence

Coh(C)op ∼= Coh(Cop)

of abelian categories.

Proof. It suffices to check that the cohomological functor Yop
c : Cop → Coh(C)op satisfies the universal

property of Coh(Cop) (see Proposition 22.1). Let A be an abelian category. Then we have a
commutative diagram

Funex(Coh(C)op,A) Funex(Coh(C),Aop)op

Funcoh(Cop,A) Funcoh(C,Aop)op.

(Yop
c )∗ (Y∗c )op'

We deduce that the left vertical map is an isomorphism, which proves the claim.

Corollary 22.3. Let (C, T ) be a triangulated category. Then Coh(C) is an abelian Frobenius
category.

Proof. Note that Coh(C) is abelian by Proposition 22.1. We already know by Proposition 21.6(ii) that
the category Coh(C) has enough projectives, and that the representable functors Yc(X) ∈ Coh(C)
are projective for each X ∈ C. In order to show that Coh(C) is Frobenius (i.e., that it also has
enough injectives and that the classes of projective and injective objects coincide), it suffices to
show that there is an equivalence

Coh(C)op ∼= Coh(Cop)

of categories. To this end, it suffices to check that Coh(C)op satisfies the universal property of
Coh(Cop): The map Yop

c : Cop → Coh(C)op given by the opposite of the Yoneda embedding C →
Coh(C) is clearly cohomological. Let now A be an abelian category. Then we have equivalences

Funcoh(Cop,A) ∼= Funcoh(C,Aop)op ∼−→ Funex(Coh(C),Aop)op ∼= Funex(Coh(C)op,A),

and it is easily checked that it is induced by precomposition with Yop
c . This finishes the proof.

Corollary 22.4. Let (C, T ) be a triangulated category with arbitrary direct sums. Then Coh(C) is
AB4 (the formation of arbitrary direct sums is exact).

Proof. Coh(C) has all direct sums by Proposition 21.6(iv) and enough injectives by Corollary 22.3.
Hence Coh(C) is AB4 (cf. Exercise 20.13).

§23. Brown Representability

Definition 23.1. Let (C, T ) be a triangulated category admitting countable direct sums. A set P0

of objects in C is called a set of generators if it satisfies

(PG1) If X ∈ C is such that HomC(T
n(P ), X) = 0 for all n ∈ Z and P ∈ P0, then X = 0.

Moreover, we call P0 a set of perfect generators if in addition it satisfies:
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(PG2) Given a countable family of maps {Xi
fi−→ Yi}i∈I in C such that HomC(P,Xi)→→ HomC(P, Yi)

is surjective for all i and P ∈ P0, then the induced map

HomC

(
P,
⊕
i∈I

Xi

)
→→ HomC

(
P,
⊕
i∈I

Yi

)
is surjective for all P ∈ P0.

Lemma 23.2. Let C be an additive category with arbitrary direct sums and weak kernels. Let P0 be
a set of objects in C and denote by P ⊆ C the full subcategory spanned by all direct sums of copies
of objects in P0.

(i) The category P has weak kernels and Coh(P) is abelian.

(ii) The functor Coh(C)→ Coh(P), F 7→ F
∣∣
P is exact.

(iii) The composite C Yc−→ Coh(C)→ Coh(P) preserves countable direct sums if and only if (PG2)
holds.

Proof. We first observe that every X ∈ C has an approximation in P, that is, there exists a map
P → X with P ∈ P such that Hom(Q,P )→→ Hom(Q,X) is surjective, for all Q ∈ P; just consider
P =

⊕
Q∈P0

Q⊕Hom(Q,X) and the canonical map P → X.

For part (i) it suffices to show that P has weak kernels as then Proposition 21.6(vi) shows that
Coh(P) is abelian. Let f : P1 → P2 be a map in P. Then the composite of a weak kernel X → P1

in C and an approximation P0 → X is a weak kernel for f .

For part (ii) the only non-trivial statement is that for F ∈ Coh(C) the restriction F
∣∣
P is

again coherent. We may assume F = HomC(−, X) for some X ∈ C. Consider the sequence
P ′

f−→ X ′
g−→ P

h−→ X, where h and f are approximations and g is a weak kernel of h in C. By
construction the sequence

HomP(−, P ′)→ HomP(−, P )→ HomC(−, X)
∣∣
P → 0

is exact.

Finally, we need to show (iii). Denote by ϕ : P ↪→ C the inclusion and by ϕ∗ : Coh(C)→ Coh(P)
the induced restriction functor.

Step 1: ϕ∗Yc commutes with countable direct sums if and only if so does ϕ∗.
The “if”-direction is clear since Yc commutes with countable direct sums. Suppose now that

ϕ∗Yc commutes with countable direct sums. Let {Fi}i∈I be a countable family in Coh(C) and
choose presentations Yc(Xi)→ Yc(Yi)→ Fi → 0. Since ϕ∗ is exact by (ii), we obtain a presentation
ϕ∗Yc(Xi)→ ϕ∗Yc(Yi)→ ϕ∗Fi → 0 and hence an exact sequence⊕

i

ϕ∗Yc(Xi)→
⊕
i

ϕ∗Yc(Yi)→
⊕
i

ϕ∗(Fi)→ 0.

By Proposition 21.6 we obtain a presentation

Yc
(⊕

i

Xi

)
→ Yc

(⊕
i

Yi

)
→
⊕
i

Fi → 0.
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By applying ϕ∗ and using that ϕ∗Yc commutes with countable direct sums, we obtain an exact
sequence ⊕

i

ϕ∗Yc(Xi)→
⊕
i

ϕ∗Yc(Yi)→ ϕ∗
(⊕

i

Fi

)
→ 0.

We deduce that the map
⊕

i ϕ
∗(Fi)

∼−→ ϕ∗(
⊕

i Fi) is an isomorphism.
Step 2: ϕ∗ : Coh(C)→ Coh(P) admits a fully faithful left adjoint ϕ! given by ϕ!(HomP(−, P )) =

HomC(−, ϕ(P )) for all P ∈ P.
Observe that we have an adjunction ϕ! : Mod(P)� Mod(C) :ϕ∗, where ϕ! is given by left Kan

extension along ϕop : Pop → Cop. As ϕ is fully faithful, so is ϕ! by Corollary 13.16. Moreover, the
diagram

P C

Mod(P) Mod(C)

ϕ

Yc Yc

∃!ϕ!

commutes, because for all F ∈ Mod(C) and P ∈ P we have natural isomorphisms

HomMod(C)
(
Ycϕ(P ), F

) ∼= F (ϕ(P )) ∼= Hom
(
Yc(P ), ϕ∗(F )

) ∼= Hom
(
ϕ!Yc(P ), F

)
,

and hence ϕ!Yc ∼= Ycϕ by the Yoneda lemma. It follows that ϕ! preserves coherent functors. Further,
ϕ∗ preserves coherent functors by (ii). Hence, we obtain an adjunction ϕ! : Coh(P)� Coh(C) :ϕ∗.

Step 3: End of the proof.
Observe that a coherent functor F ∈ Coh(C) lies in Ker(ϕ∗) if and only if F is the cokernel of

Yc(X)→ Yc(Y ), for some map X → Y , such that for all P ∈ P the induced map HomC(P,X)→→
HomC(P, Y ) is surjective. We conclude with the following equivalences:

(PG2) holds ⇐⇒ Ker(ϕ∗) is closed under countable direct sums
⇐⇒ ϕ∗ : Coh(C)→ Coh(P) preserves countable direct sums (Exercise 9.7)
⇐⇒ C → Coh(P) preserves countable direct sums.

Theorem 23.3 (Brown Representability). Let (C, T ) be a triangulated category with arbitrary direct
sums. Suppose that C admits a set P0 of perfect generators.

(i) If L ⊆ C is a triangulated subcategory which is closed under arbitrary direct sums and contains
P0, then L = C.

(ii) Let H : Cop → Ab be a cohomological functor which preserves arbitrary products (i.e., H sends
arbitrary direct sums in C to products in Ab). Then H is representable, that is, there exists
X ∈ C and a natural isomorphism

HomC(−, X) ∼−→ H

of functors Cop → Ab.
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Proof. Replacing P0 by
⋃
n∈Z T

n(P0), we may assume T±1(P0) = P0. We denote by P ⊆ C the full
subcategory spanned by all direct sums of the P for P ∈ P0. Let L ⊆ C be the smallest triangulated
subcategory which is closed under all direct sums and contains P0.

Let H : Cop → Ab be a cohomological functor which preserves arbitrary products. We will
inductively construct maps fi : Xi → Xi+1 in L and φi : Y(Xi) → H in Mod(C) such that for all
i ∈ Z≥0 we have:

(a) φi = φi+1 ◦ Y(fi);
(b) The map φi+1,P : HomC(P,Xi+1)→→ H(P ) is surjective, for all P ∈ P0;

(c) Ker(HomC(P,Xi)
fi∗−−→ HomC(P,Xi+1)) = Ker(φiP ), for all P ∈ P0.

We put X0 = 0 and let φ0 : Y(X0) → H be the zero map. We define X1 :=
⊕

P∈P0
P⊕H(P ) ∈ L.

Observe that

Hom(Y(X1), H) = H(X1) =
∏
P∈P0

∏
H(P )

H(P ) =
∏
P∈P0

HomSet(H(P ), H(P )),

and so we let φ1 : Y(X1)→ H be the map corresponding to the identity on H(P ) for each P ∈ P0.
Note that the map φ1P : HomC(P,X1)→→ H(P ) is surjective by construction, for each P ∈ P0.

Suppose that we have constructed Xi, and maps fi−1 : Xi−1 → Xi, φi : Y(Xi) → H satisfying
(a), (b) and (c), for all i < n. Consider the object Kn :=

⊕
P∈P0

P⊕Ker(φn)(P ) ∈ L and the
map kn : Kn → Xn given by f : P → Xn on the summand corresponding to f ∈ Ker(φn)(P ) ⊆
Hom(P,Xn). Observe that the composite Y(Kn) → Y(Xn)

φn−−→ H vanishes, because the corre-
sponding element in H(Kn) =

∏
P∈P0

∏
Ker(φn)(P )H(P ) is zero. In other words, kn factors as

Y(Kn)→ Ker(φn)→ Y(Xn).

We now complete kn : Kn → Xn to a distinguished triangle

Kn
kn−→ Xn

fn−→ Xn+1 → T (Kn)(23.1)

in L. Since H is cohomological, we obtain a commutative diagram

H(Xn+1) H(Xn) H(Kn)

Hom(Y(Xn+1), H) Hom(Y(Xn), H) Hom(Ker(φn), H) Hom(Y(Kn), H)

H(fn) H(kn)

in Ab, where the top row is exact. Identifying φn : Y(Xn) → H with an element of H(Xn), we
deduce H(kn)(φn) = 0 from the fact that the composite Ker(φn)→ Y(Xn)

φn−−→ H vanishes. Hence,
we find φn+1 ∈ Hom(Y(Xn+1), H) = H(Xn+1) such that φn+1 ◦ Y(fn) = H(fn)(φn+1) = φn. Thus,
we have constructed maps fn : Xn → Xn+1 and φn+1 : Y(Xn+1) → H such that (a) is satisfied.
Then (b) and the inclusion “⊆” in (c) are a formal consequence of (a). For the converse inclusion in
(c), we apply the cohomological functor HomC(P,−) (where P ∈ P0) to the distinguished triangle
(23.1) to obtain an exact sequence

HomC(P,Kn)
kn∗−−→ HomC(P,Xn)

fn∗−−→ HomC(P,Xn+1).
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It therefore suffices to show that Ker(φnP ) ⊆ Im(kn∗), for any P ∈ P0. To this end, let α ∈
Ker(φnP ) = Ker(φn)(P ) ⊆ HomC(P,Xn). Denoting by α̃ : P →

⊕
P ′∈P0

P ′⊕Ker(φn)(P ′) = Kn the
inclusion into the component corresponding to α, we obtain kn ◦ α̃ = α as desired. This completes
the construction.

Consider the distinguished triangle⊕
i≥0

Xi
id−shift−−−−−→

⊕
i≥0

Xi → X → T (
⊕
i≥0

Xi),(23.2)

so that X = hocolimiXi ∈ L. Since H is cohomological and commutes with countable products,
we obtain an exact sequence

H(X)→
∞∏
i=0

H(Xi)
id−shift−−−−−→

∞∏
i=0

H(Xi).

Viewing φi : Y(Xi)→ H as an element of H(Xi), we observe that (φi)i is killed by id− shift. Hence,
there exists φ ∈ H(X) mapping to (φi)i. In other words, the φi : Y(Xi)→ H give rise to a map

φ : Y(X)→ H.

Note that by (a)–(c) there are commutative diagrams

0 Ker(φi)
∣∣
P HomC(−, Xi)

∣∣
P H

∣∣
P 0

0 Ker(φi+1)
∣∣
P HomC(−, Xi+1)

∣∣
P H

∣∣
P 0.

0

φi

fi∗

φi+1

By passing to direct sums, and noting that
⊕

i Ker(φi)
∣∣
P ↪→

⊕
i HomC(−, Xi)

∣∣
P is a monomorphism

as Coh(C) is AB4 by Corollary 22.4 and Coh(C)→ Coh(P) is exact and preserves countable direct
sums by Lemma 23.2, we obtain a commutative diagram

0 Ker(id− shift) 0

0
⊕∞

i=0 Ker(φi)
∣∣
P

⊕∞
i=0 HomC(−, Xi)

∣∣
P

⊕∞
i=0H

∣∣
P 0

0
⊕∞

i=0 Ker(φi)
∣∣
P

⊕∞
i=0 HomC(−, Xi)

∣∣
P

⊕∞
i=0H

∣∣
P 0

0 Coker(id− shift) H
∣∣
P 0

id−0 ' id−shift id−shift

with exact rows and columns. Hence, the middle column constitutes an exact sequence

0 −→
∞⊕
i=0

HomC(−, Xi)
∣∣
P

id−shift−−−−−→
∞⊕
i=0

HomC(−, Xi)
∣∣
P −→ H

∣∣
P −→ 0.
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By Lemma 23.2 we obtain an isomorphism
⊕

i HomC(−, Xi)
∣∣
P
∼= HomC(−,

⊕
iXi)

∣∣
P . Therefore,

applying the cohomological functor C → Coh(P) to (23.2) yields a short exact sequence

0 −→
∞⊕
i=0

HomC(−, Xi)
∣∣
P

id−shift−−−−−→
∞⊕
i=0

HomC(−, Xi)
∣∣
P −→ HomC(−, X)

∣∣
P −→ 0,

where we have used that P is closed under translation. Combining both short exact sequences, we
deduce that

φ
∣∣
P : HomC(−, X)

∣∣
P
∼−→ H

∣∣
P(23.3)

is an isomorphism. It remains to show that φ is an isomorphism. Let T ⊆ C be the full subcategory
spanned by the objects Y such that φT i(Y ) : HomC(T

i(Y ), X)→ H(T i(Y )) is an isomorphism for
all i ∈ Z. Since both HomC(−, X) and H are cohomological and commute with arbitrary products,
it follows that T is a triangulated subcategory which is closed under arbitrary direct sums. Since
also P0 ⊆ T by (23.3), we deduce L ⊆ T .

We are thus reduced to showing that L = C. To this end, let Y ∈ C be arbitrary. Applying the
previous discussion to H = HomC(−, Y ), we construct a sequence X0

f0−→ X1
f1−→ · · · in L and a

map φ̃ : X = hocolimiXi → Y with X ∈ L such that the map

HomC(T
i(P ), X) ∼−→ HomC(T

i(P ), Y )

is an isomorphism for all i and P ∈ P0. Completing φ̃ to a distinguished triangle X φ̃−→ Y → Z →
T (X), we deduce from the fact that HomC(P,−) is cohomological that HomC(P,Z) = 0 for all i
and P ∈ P0. From (PG1) we get Z = 0, hence φ̃ : X → Y is an isomorphism. This shows Y ∈ L
and hence L = C, which finishes the proof.

We first look at some consequences of Brown representability before we turn to examples.

Corollary 23.4. Let (C, T ) be a triangulated category with arbitrary direct sums, which admits a
set P0 of perfect generators.

(i) C admits arbitrary products.
(ii) Let L : C → D be an exact functor which commutes with arbitrary direct sums. Then L admits

an exact right adjoint.

Proof. For part (i), let {Xi}i be a family of objects in C. We apply Theorem 23.3 to the cohomological
functor

H :=
∏
i

HomC(−, Xi) : Cop → Ab.

We deduce that there exists X ∈ C such that HomC(Y,X) =
∏
i HomC(Y,Xi) naturally in Y ∈ C.

In other words, X =
∏
iXi.

For part (ii), we note that the functor HomD(L(−), D) : Cop → Ab is cohomological and com-
mutes with arbitrary direct sums. Hence, by Theorem 23.3 there exists R(D) ∈ C and a natural
isomorphism

HomC
(
−, R(D)

) ∼−→ HomD(L(−), D).
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Then the R(D) assemble into a right adjoint R : D → C of L. Finally, R is exact by Proposition 6.5.

Definition 23.5. Let C be a triangulated category. An object X ∈ C is called compact if the
functor HomC(X,−) : C → Ab commutes with arbitrary direct sums.

Corollary 23.6. Let (C, T ) be a triangulated category which admits arbitrary direct sums. Suppose
that C admits a set P0 ⊆ C of compact generators, i.e., a set of generators which are compact.

Then both C and Cop satisfy the hypotheses of Theorem 23.3.

Proof. We call a set S0 ⊆ C a set of symmetric generators if S0 satisfies (PG1) and

(PG3) there exists a set T0 ⊆ C such that for every map X → Y in C the map HomC(S,X) →→
HomC(S, Y ) is surjective for all S ∈ S0 if and only if HomC(Y, T ) ↪→ HomC(X,T ) is injective
for all T ∈ T0.

Note that (PG3) implies (PG2). We deduce that if S0 is a set of symmetric generators, then S0

(resp. T0) is a set of perfect generators in C (resp. Cop).1 It therefore suffices to prove that every
set of compact generators satisfies (PG3).

By the compactness it is clear that P0 is a set of perfect generators, and hence Brown repre-
sentability holds for C. Hence, Cop admits arbitrary direct sums by Corollary 23.4. Fix any P ∈ P0.
Then the functor

H : Cop → Ab,

X 7→ HomAb

(
HomC(P,X),Q/Z

)
is cohomological (since Q/Z is injective in Ab) and preserves arbitrary products (since P is compact).
By Theorem 23.3 we find QP ∈ C and a natural isomorphism HomC(−, QP ) ∼−→ H. Since Q/Z is
a cogenerator for Ab, we deduce that for any map X → Y , the map HomC(P,X) →→ HomC(P, Y )
is surjective if and only if HomC(Y,QP ) ↪→ HomC(X,QP ) is injective. Since P was arbitrary, it
follows that P0 satisfies (PG3).

Example 23.7. Let Λ be a ring. Then Mod(Λ) is AB4* and D(Mod(Λ)) is compactly generated
by Λ: Indeed, Λ generates because HomD(Mod(Λ))(Λ, X) = H0(X) for every X ∈ D(Mod(Λ)); and
Λ is compact, because the formation of arbitrary direct sums in Mod(Λ) is exact, and hence H0

commutes with arbitrary direct sums.

From Brown representability we obtain an alternative proof of Theorem 17.11:

Theorem 23.8. Let A be an abelian category which satisfies AB4*. Suppose that A admits a set
I of injective cogenerators.2 We write Khinj(A) ⊆ K(A) for the smallest triangulated subcategory
containing I and which is closed under arbitrary products.

Then the inclusion Khinj(A) ↪→ K(A) admits a left adjoint i : K(A)→ Khinj(A) and the composite
Khinj(A)→ K(A)→ D(A) is an equivalence of categories.

1To see that T0 is a symmetric set of generators of Cop, use that, if X
f−→ Y

g−→ Z
h−→ X[1] is a distinguished

triangle in Cop, then HomCop (T,X)→→ HomCop (T, Y ) is surjective if and only if HomCop (T, Z) ↪→ HomCop (T,X[1])
is injective.

2This means that every object of A embeds into a product of objects in I. In particular HomA(X, I) = 0 for all
I ∈ I implies X = 0.
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Proof. We first show that for any I ∈ I we have a natural isomorphism

HomK(A)(X, I) ∼= HomA(H0(X), I)(23.4)

in X ∈ K(A). We consider the commutative diagram

B0(X, I) HomC(A)(X, I) HomK(A)(X, I) 0

{
f
∣∣ f(H0(X)) = 0

}
HomA

(
X0/ Im(d−1), I

)
HomA(H0(X), I) 0,

' '

where B0(X, I) denotes the subgroup of null homotopic maps, and the lower row is exact since I is
injective. Then the right vertical map is an isomorphism by the five lemma.

We claim that I ⊆ Khinj(A) is a set of perfect cogenerators, i.e., a set of perfect generators in
Khinj(A)op. Indeed, let X ∈ Khinj(A) such that Hom(X, I[n]) = 0 for all n ∈ Z and I ∈ I. Then the
full subcategory T ⊆ Khinj(A) spanned by the objects Y such that Hom(X,Y [n]) = 0 for all n ∈ Z
is triangulated and closed under arbitrary products. As T contains I, we deduce T = Khinj(A).
Now the Yoneda lemma implies X = 0. Hence, I is a set of cogenerators for Khinj(A). Let now
{Xi → Yi}i be a countable family of maps in Khinj(A) such that Hom(Yi, I) →→ Hom(Xi, I) is
surjective for all I ∈ I and all i. Since I is a set of cogenerators, the isomorphism (23.4) shows that
H0(Xi) ↪→ H0(Yi) is a monomorphism. As H0 commutes with arbitrary products and the formation
of products is left exact, we deduce that H0(

∏
iXi) ↪→ H0(

∏
i Yi) is a monomorphism. Hence, in

the commutative diagram

HomKhinj(A)

(∏
i Yi, I

)
HomKhinj(A)

(∏
iXi, I

)

HomA
(
H0
(∏

i Yi

)
, I
)

HomA
(
H0
(∏

iXi

)
, I
)∼ ∼

the bottom horizontal map is surjective. It follows that the top horizontal map is is surjective, i.e.,
I satisfies (PG2). Hence, I is a set of perfect cogenerators in Khinj(A).

Since the inclusion Khinj(A) ↪→ K(A) preserves arbitrary products, it admits a left adjoint i
by Corollary 23.4. We denote by η : idK(A) → i the unit of the adjunction. Let X ∈ K(A). We
claim that ηX : X → iX is a quasi-isomorphism. For each I ∈ I and n ∈ Z we have a commutative
diagram

HomK(A)

(
iX[n], I

)
HomK(A)(X[n], I)

HomA
(
Hn(iX), I

)
HomA

(
Hn(X), I

)
,

∼

∼ ∼

where the top horizontal map comes from the adjunction and the vertical maps are (23.4). We
deduce that the bottom horizontal map is an isomorphism. As I is a set of cogenerators, it follows
that Hn(X) ∼−→ Hn(iX) is an isomorphism for all n. Hence, ηX is a quasi-isomorphism.

Let now f : X → Y be a quasi-isomorphism in Khinj(A). We claim that f is an isomorphism.
Let T ⊆ Khinj(A) be the full subcategory spanned by the objects Z such that f∗ : Hom(Y,Z[n]) ∼−→
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Hom(X,Z[n]) is an isomorphism for all n ∈ Z. Then T is triangulated and closed under products.
From (23.4) we deduce I ⊆ T , because f is a quasi-isomorphism. It follows that T = Khinj(A), and
then the Yoneda lemma implies that f is an isomorphism.

We now apply Corollary 10.9 (where we observe that (∗) is satisfied since η is a quasi-isomorphism)
to deduce that the functor

Khinj(A) ∼= Khinj(A)qis
∼−→ K(A)qis = D(A)

is an equivalence of categories.

§24. Grothendieck categories

Let F : A → B be a (left exact) functor between abelian categories. In Theorem 17.11 we found that
F extends to a derived functor on the unbounded derived categories if A is AB4*, i.e., arbitrary
products exist and are exact. However, many abelian categories of interest are not AB4* (e.g.,
sheaves on a topological space, quasi-coherent sheaves on a scheme, . . . ). Hence it is desirable to
prove the existence of unbounded derived functors from weaker conditions on A.

Example 24.1. Let X be the Hawaiian earring:

Then Shv(X,Ab) is an abelian category which does not satisfy AB4*. See [Wu] for details.

As it turns out, basically all abelian categories of interest are Grothendieck categories.

Definition 24.2. Let A be an abelian category.

(i) An object G ∈ A is called a generator if the functor HomA(G,−) : A → Ab is conservative.
(ii) An abelian category A is called Grothendieck if it is AB5 (filtered colimits exist and are exact)

and has a generator.

Lemma 24.3. Let A be an abelian AB3 category (i.e., A admits arbitrary direct sums). For an
object G ∈ A the following conditions are equivalent:

(a) G is a generator.
(b) The functor HomA(G,−) : A → Ab is faithful.
(c) The functor HomA(G,−) detects epimorphisms and monomorphisms.
(d) For every object A ∈ A the canonical map G⊕Hom(G,A) →→ A is an epimorphism.

Proof. Suppose that G is a generator. Let f : A→ B be a map such that HomA(G, f) = 0. Denote
by ι : Ker(f) → A the inclusion of the kernel of f . Since HomA(G,−) is left exact, we obtain an
exact sequence

0→ HomA(G,Ker(f))
ι∗−→ HomA(G,A)

0−→ HomA(G,B).
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It follows that ι∗ is an isomorphism. Since G is a generator, ι is an isomorphism, which shows f = 0.
Hence HomA(G,−) is faithful.

For the implication “(b) =⇒ (c)” let f : A → B be a map such that f∗ : HomA(G,A) →
HomA(G,B) is an epimorphism. Let p, q : B ⇒ C be two maps with pf = qf . Then p∗f∗ = q∗f∗
and hence p∗ = q∗ as maps HomA(G,B) → HomA(G,C) since f∗ is an epimorphism. But then
p = q since HomA(G,−) is faithful, which shows that f is an epimorphism. A similar argument
shows that, if f∗ is a monomorphism, then so is f .

The implication “(c) =⇒ (d)” is clear.

We show “(d) =⇒ (b)”. Let f, g : A ⇒ B such that f∗, g∗ : HomA(G,A) ⇒ HomA(G,B) agree.
In other words, we have fϕ = gϕ for every ϕ : G→ A. But then also fπ = gπ, where π denotes the
epimorphism G⊕Hom(G,A) → A. We deduce that f = g and hence HomA(G,−) is faithful.

Finally, the implication “(c) =⇒ (a)” follows from the fact that a morphism in an abelian category
is an isomorphism as soon as it is an epimorphism and a monomorphism.

Remark 24.4. We analyze the conditions under which the implications in Lemma 24.3 hold. We
fix a category C.

The implication “(a) =⇒ (b)” holds if C admits equalizers, “(b) =⇒ (c)” always holds, “(c)⇐⇒
(d)” holds if C admits arbitrary coproducts, and “(c) =⇒ (a)” holds if a map in C is an isomorphism
as soon as it is monic and epic.

Lemma 24.5. Let A be an object in a Grothendieck category A. Then the subobjects of A form a
set.

Proof. Let G ∈ A be a generator. Then HomA(G,A) is a set, and it suffices to show that the class
of subobjects of A embedds into the power set of HomA(G,A). Let fi : Ui ↪→ A be subobjects
(i = 1, 2). Put U := U1 ×A U2 and consider the induced cartesian diagram

HomA(G,U) HomA(G,U2)

HomA(G,U1) HomA(G,A).

y
f2∗

f1∗

If the images of f1∗ and f2∗ coincide, then the top horizontal and the left vertical maps are
isomorphisms. Since G is a generator, we conclude that the projections U ∼−→ Ui are isomorphisms,
hence U1 and U2 are equivalent subobjects of A.

Theorem 24.6 (Gabriel–Popescu). Let A be a Grothendieck abelian category. Then there exists a
ring Λ and an exact Bousfield localization

T : Mod(Λ)→ A.

Proof. Let G ∈ A be a generator and put Λ := EndA(G)op. Consider the functor

H : A → Mod(Λ),

A 7→ H(A) := HomA(G,A),
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where Λ acts on H(A) by functoriality through its action on G.

Step 1: H admits a left adjoint.
Let C ⊆ Mod(Λ) be the full subcategory spanned by the Λ-modules M such that the functor

FM : A → Set,

A 7→ HomΛ(M,H(A))

is corepresentable, that is, there exists T (M) ∈ A and a natural isomorphism

τM : HomA(T (M),−) ∼−→ FM .

We have Λ ∈ C, Since we have a natural isomorphism

HomA(G,A) = H(A) ∼= HomΛ(Λ, H(A)) = FΛ(A).

We show that C is closed under arbitrary direct sums. Let {Mi}i∈I be a family of Λ-modules in C.
Let τMi

: HomA(T (Mi),−) ∼−→ FMi
be natural isomorphisms. Then we have a natural isomorphism

HomA

(⊕
i∈I

T (Mi),−
)

=
∏
i∈I

HomA(T (Mi),−)

∏
τMi−−−−→
∼

∏
i∈I

HomΛ(Mi, H(−)) = HomΛ

(⊕
i∈I

Mi, H(−)
)
,

which shows
⊕

iMi ∈ C.
Next, C is also closed under cokernels. Let f : M → N be a map in C and denote by

τM : HomA(T (M),−) ∼−→ FM and HomA(T (N),−) ∼−→ FN the natural isomorphisms. For every
A ∈ A we have a commutative diagram

0 HomA
(
Coker(T (f)), A

)
HomA(T (N), A) HomA(T (M), A)

0 HomΛ(Coker(f), H(A)) HomΛ(N,H(A)) HomΛ(M,H(A)).

τN∼ τM∼

By the five lemma, the left vertical map is an isomorphism, naturally in A. Therefore, Coker(f) ∈ C
as desired.

Since every Λ-module M is the cokernel of a map Λ⊕J → Λ⊕I , and C contains Λ and is closed
under arbitrary direct sums and cokernels, we deduce M ∈ C. Therefore, C = Mod(Λ). By
construction, the assignments M 7→ T (M) assemble into a left adjoint

T : Mod(Λ)→ A,
M 7→ G⊗

Λ
M.

of H.

Step 2: If a map f : M → H(A) of Λ-modules is a monomorphism, then the adjoint φ :=
εA ◦ T (f) : T (M)→ TH(A)→ A is a monomorphism as well.

Observe first that the counit εG⊕n : TH(G⊕n) ∼−→ G⊕n is an isomorphism for all n ≥ 0. We have
a commutative diagram

HomΛ(Λ,Λ⊕n) HomΛ

(
Λ, H(G⊕n)

)
HomA

(
T (Λ), TH(G⊕n)

)
HomA

(
G,G⊕n

)
.

T

∼ εG⊕n
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We deduce that every map G→ G⊕n is of the form T (v) for some v : Λ→ Λ⊕n.
We prove the claim by contraposition. So let f : M → H(A) be a map such that K = Ker(φ) ⊆

T (M) is non-zero. We will show that f is not a monomorphism. Choose an epimorphism π : Λ⊕I →→
M . Since filtered colimits are exact in A, the natural map

lim−→
J⊆I
finite

(
G⊕J ×T (M) K

)
∼−→ G⊕I ×T (M) K

is an isomorphism. We therefore find a finite subset J ⊆ I and a map u : G→ G⊕J such that the
composite

G
u−→ G⊕J

T (π)−−−→ T (M)

is non-zero and factors through K. By the observation above, we have u = T (v) for some v : Λ→
Λ⊕J . Now we have a commutative diagram

HT (Λ) HT (Λ⊕J) HT (M) H(A)

Λ Λ⊕J M,

HT (v) HT (π) H(φ)

ηΛ

v π

ηΛ⊕J
f

ηM

from which we deduce vπ 6= 0 and fvπ = 0. Hence, f is not a monomorphism.

Step 3: The functor H : A ↪→ Mod(Λ) is fully faithful.
We need to show that the counit εA : TH(A) ∼−→ idA is an isomorphism for every A ∈ A.

Note that the triangle identity gives HεA ◦ ηH(A) = idH(A). Hence HεA = HomA(G, εA) is an
epimorphism, and then Lemma 24.3 shows that εA is an epimorphism. Moreover, the identity
H(A) → H(A) is a monomorphism, and hence Step 2 shows that εA is a monomorphism as well.
Since A is abelian, it follows that εA is a natural isomorphism as desired.

Step 4: T : Mod(Λ)→ A is exact.
As a left adjoint, T is right exact, so it remains to prove that T preserves monomorphisms. We

proceed in several steps. Let f : M ↪→ N be a monomorphism of Λ-modules.

(a) Suppose that N = Λ⊕n = H(G⊕n) is finite free. Then we have a commutative diagram

T (M) TH(G⊕n)

G⊕n.

T (f)

εG⊕n∼

By Step 2 the oblique arrow is a monomorphism, and the vertical map is an isomorphism. It
follows that T (f) is a monomorphism.

(b) Suppose that N = Λ⊕I is free. Write N = lim−→J⊆I Λ⊕J , where J runs through the finite
subsets of I. Putting MJ := f−1(Λ⊕J), we can write f : M → N as the filtered colimit of
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maps MJ → Λ⊕J . Since T commutes with colimits and filtered colimits in A are exact, it
follows that

T (f) = lim−→
J⊆I
finite

T
(
MJ → Λ⊕J

)
is a monomorphism.

(c) The general case. Since Mod(Λ) has enough projectives, in order to prove that T is exact, it
suffices to show that the first left derived functor L1T = 0 vanishes (cf. the dual of Remark 14.6).
So let M ∈ Mod(Λ) and choose a resolution 0 → Q → F → M → 0 where F is free. We
obtain an exact sequence

0 = L1T (F )→ L1T (M)→ T (Q)→ T (F )→ T (M)→ 0.

By (b) the map T (Q) ↪→ T (F ) is a monomorphism, which implies L1T (M) = 0 as desired.

This finishes the proof that T is exact.

Definition 24.7. Let A be an abelian category. An essential extension is a monomorphism A ↪→ E
in A such that for every non-zero subobject X ⊆ E it holds that A ∩X 6= 0.

As essential extension A ↪→ E is called an injective hull if E is an injective object in A.

Theorem 24.8. Let A be a Grothendieck category. Then A admits an injective cogenerator and
every object admits an injective hull.

Proof. Step 1: Ab has the injective cogenerator Q/Z.
It is well-known that an abelian group is injective if and only if it is divisible. Hence Q/Z is

injective. In order to show that Q/Z is a cogenerator, it suffices to show the following: Let A ∈ Ab
be an abelian group and x ∈ A \ {0}. Then there exists a homomorphism f : A → Q/Z with
f(x) 6= 0. Indeed, let 〈x〉 ⊆ A be the subgroup generated by x. If 〈x〉 is finite of order n, we put
g : 〈x〉 → Q/Z, ix 7→ i

n . Otherwise, 〈x〉 ∼= Z and we put g(ix) = i
2 . In any case we have g(x) 6= 0.

Since Q/Z is injective, g extends to a homomorphism f : A→ Q/Z with f(x) 6= 0 as desired.

Step 2: Mod(Λ) (for a ring Λ) has the injective cogenerator HomAb(Λ,Q/Z).
The forgetful functor Mod(Λ) → Ab is exact and admits a right adjoint HomAb(Λ,−). Hence,

HomAb(Λ,Q/Z) is injective. It is also a cogenerator, because if M ∈ Mod(Λ) injects into some
(Q/Z)I , then we have a commutative diagram

M HomAb(Λ, (Q/Z)I) HomAb(Λ,Q/Z)I

(Q/Z)I .

ϕ7→ϕ(1)

It follows that the top horizontal map is a monomorphism as desired.

Step 3: We show that any Grothendieck category A with enough injectives admits injective
hulls.

Fix A ∈ A and let A ↪→ I an embedding of A into an injective object I. The class X of essential
extensions of A in I is non-empty and a partially ordered set (by Lemma 24.5) with respect to
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inclusion. If (Eα)α is a chain of essential extensions of A, then E =
⋃
αEα is again an essential

extension of A: Given any non-zero subobject X ⊆ E, we have X =
⋃
α(Eα ∩X) because A is AB5

(and hence filtered colimits commute with finite limits). Hence Eα ∩X 6= 0 for some α, and then
A ∩X 6= 0 because A ↪→ Eα is essential. By Zorn’s Lemma we find a maximal essential extension
A ↪→ E inside I.

We now prove that E is a direct summand of I. By Zorn’s lemma we find a maximal subobject
Q ⊆ I with Q ∩ E = 0 (again, this uses that A is AB5). The composite f : E ↪→ I

p−→ I/Q is a
monomorphism by construction. It is also essential: If X ⊆ I/Q is a subobject with f−1(X) = 0,
then p−1(X) ∩ E = 0. By maximality of Q we have p−1(X) = Q, i.e., X = 0. Since I is injective,
there exists a map g : I/Q→ I making the following diagram commute:

E I/Q

I.

g

The image of g is an essential extension of E, hence an essential extension of A as is immediately
verified. We deduce Im(g) = E by maximality of E. It follows that the essential extension E ↪→ I/Q
splits; but this implies that it is an isomorphism. This shows E ⊕ Q = I. In particular, E is an
injective hull of A.

Step 4: There exists a ring Λ and functors

C Mod(Λ) A,
i

t

T

H

where:

(a) i is fully faithful and left adjoint to t,

(b) T is an exact Bousfield localization with fully faithful right adjoint H,

(c) C = Ker(T ),

(d) the composite C⊥ → Mod(Λ)
T−→ A is an equivalence, where

C⊥ :=
{
M ∈ Mod(Λ)

∣∣Hom(C,M) = 0 = Ext1(C,M) for all C ∈ C
}
⊆ Ker(t).

(e) We have equalities Inj(Mod(Λ)) ∩Ker(t) = Inj(Mod(Λ)) ∩ C⊥ = Inj(C⊥), where Inj denotes the
class of injective objects. In particular, C⊥ is closed under injective hulls.

By Theorem 24.6 there exists a ring Λ and an exact Bousfield localization

T : Mod(Λ)→ A

with fully faithful right adjoint H. The inclusion C := Ker(T ) ↪→ Mod(Λ) admits a right adjoint
t: Indeed, let M ∈ Mod(Λ) and denote by ηM : M → HT (M) the unit. Note that T (ηM ) is an
isomorphism by Theorem 9.4(ii); in particular, Ker(ηM ) ∈ Ker(T ). Now, for every C ∈ C we have
an exact sequence

0→ Hom(C,Ker(ηM ))→ Hom(C,M)
ηM∗−−−→ Hom(C,HT (M)) = Hom(T (C), T (M)) = 0.
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Hence, the right adjoint t : Mod(Λ)→ C is given by t(M) = Ker(ηM ).
We now prove part (d). By Theorem 9.4(iv) it suffices to identify C⊥ with the essential image

of H, that is, the full subcategory of H-local objects. For C ∈ C and A ∈ A we have

Hom(C,H(A)) = HomA(T (C), A) = 0.

Let now 0→ H(A)
f−→ E → C → 0 be a short exact sequence. As T is exact and T (C) = 0, it follows

that f is an H-local equivalence. In other words, precomposition with f induces an isomorphism
Hom(E,H(A)) ∼−→ Hom(H(A), H(A)). We deduce that the short exact sequence splits, and hence
Ext1(C,H(A)) = 0. Therefore, the H-local objects are contained in C⊥. Conversely, let M ∈ C⊥
and let f : N → N ′ be an H-local equivalence. As T is exact, this means Ker(f),Coker(f) ∈ C.
The exact sequences 0→ Ker(f)→ N → Im(f)→ 0 and 0→ Im(f)→ N ′ → Coker(f)→ 0 induce
exact sequences

0→ Hom(Im(f),M)→ Hom(N,M)→ Hom(Ker(f),M) = 0

and

0 = Hom(Coker(f),M)→ Hom(N ′,M)→ Hom(Im(f),M)→ Ext1(Coker(f),M) = 0.

It follows that f∗ : Hom(N ′,M) ∼−→ Hom(Im(f),M) ∼−→ Hom(N,M) is an isomorphism, i.e., M is
H-local.

Finally, let us establish (e). The first equality is clear from the fact that Ext1(−, I) = 0 for any
injective Λ-module I. By (d) the inclusion C⊥ ⊆ Mod(Λ) is left exact and has an exact left adjoint.
Therefore, the inclusion preserves injectives, we shows Inj(C⊥) ⊆ Inj(Mod(Λ)) ∩ C⊥. On the other
hand, the left exactness visibly implies Inj(Mod(Λ)) ∩ C⊥ ⊆ Inj(C⊥).

It remains to check that C⊥ is closed under injective hulls. Let A ∈ C⊥ and let A→ E(A) be the
injective hull in Mod(Λ). Then A∩t(E(A)) = 0, and hence t(E(A)) = 0 because E(A) is an essential
extension of A. Hence E(A) ∈ Inj(Mod(Λ)) ∩ Ker(t) ⊆ Inj(C⊥), by our previous observations. In
particular, if A is injective in C⊥, then A is a retract of E(A) and hence also injective in Mod(Λ).

Step 5: End of the proof.
By step 4, every object A ∈ A admits an injective hull, say E(A). Moreover, G = T (Λ) is

a generator of A, and the class S of subobjects of G forms a set by Lemma 24.5. We claim
that I :=

∏
U∈S E(G/U) is an injective cogenerator of A. It suffices to prove that every non-zero

object A ∈ A admits a non-zero map A → I. But this is clear because, since G is a generator,
there is a non-zero map G → A, which induces an embedding G/U ↪→ A. But then the inclusion
G/U ↪→ E(G/U) ⊆ I extends to a non-zero map A→ I as desired.

We will use the following deep fact without proof:

Fact 24.9. Let A be a Grothendieck category. Then D(A) is locally small.

Proof. This is proved in Theorem B.21. See also [Kra21, Proposition 4.3.8].

Theorem 24.10. Let A be a Grothendieck category. Then the functor Q : K(A) → D(A) is a
Bousfield localization.
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Proof. Choose an exact Bousfield localization T : Mod(Λ)→ A, for some ring Λ with fully faithful
right adjoint H (see Theorem 24.6). Then also K(T ) : K(Mod(Λ))→ K(A) is a Bousfield localization
with fully faithful right adjoint K(H). Note thatMod(Λ) is AB4* and admits an injective cogenerator
by Theorem 24.8. By Theorem 23.8 the functor QΛ : K(Mod(Λ)) → D(Mod(Λ)) is a Bousfield
localization. Moreover, there is a derived functor

D(T ) : D(Mod(Λ))→ D(A),

where T commutes with arbitrary direct sums, D(A) is locally small by Fact 24.9, and D(Mod(Λ))
is compactly generated by Example 23.7. Now Corollary 23.4 provides a right adjoint RH : D(A)→
D(Mod(Λ)) of D(T ). Consider now the following commutative diagram

K(Mod(Λ)) D(Mod(Λ))

K(A) D(A)

QΛ

K(T ) D(T )

QA

in which K(T ) is a Bousfield localization and D(T )QΛ : K(Mod(Λ))→ D(A) admits a right adjoint.
Applying Lemma 8.8 with (C, S,D, T ) = (K(Mod(Λ)),K(T )−1({iso}),D(A), {iso}) shows that the
localization functor QA : K(A)→ D(A) admits a right adjoint (which then is necessarily fully faithful
by Exercise 8.11). Hence, QA is a Bousfield localization.

B. Presentable categories

The goal of this section is to give a proof of Fact 24.9. This will be achieved in Theorem B.21.

Definition B.1. A cardinal κ is called regular if for every collection (λi)i∈I of cardinals we have∑
i∈I λi < κ provided that |I| < κ and λi < κ for all i ∈ I.

Example B.2. (i) ℵ0 is regular.

(ii) The successor κ+ of an infinite cardinal κ is regular. In particular, there exist infinitely many
regular cardinals.

Definition B.3. Let κ be a regular cardinal. A category I is called κ-filtered if:

• I 6= ∅;

• for any family of objects (xi)i∈I with |I| < κ there exists x ∈ I and morphisms xi → x, for
all i;

• for any family of morphisms (fi : x → y)i∈I with |I| < κ there exists a morphism f : y → z
such that f ◦ fi = f ◦ fj for all i, j.

The colimit over a κ-filtered diagram will usually be denoted by “lim−→” instead of “colim”.

Example B.4. (i) A ℵ0-filtered category is the same as a filtered category.

(ii) If λ ≤ κ are regular cardinals, then every κ-filtered category is also λ-filtered.

(iii) The category Setκ of κ-small sets is κ-filtered, for any regular cardinal κ.
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(iv) If κ is a regular cardinal and C is a category admitting κ-small colimits, then C is κ-filtered.

An important property of the category Set is that κ-filtered colimits commute with κ-small
limits:

Lemma B.5. Let κ be a regular cardinal. Let I be a small κ-filtered category and J a κ-small
category. Then for every functor F : I × J → Set the canonical map

lim−→
i∈I

lim
j∈J

F (i, j) ∼−→ lim
j∈J

lim−→
i∈I

F (i, j)

is an isomorphism.

Proof sketch. An element of the right hand side consists of a function ϕ : Ob(J ) → Ob(I) and
objects xj ∈ F (ϕ(j), j) for all j ∈ J which are compatible under the transition maps. As I is
κ-filtered and J is κ-small, there exists i ∈ I and maps fj : ϕ(j)→ i for all j ∈ J . Then the image
of the xj in F (i, j) assemble into an element of the left hand side, which shows that the map is
surjective.

For injectivity, let x, y ∈ lim−→i
limj F (i, j) whose images in limj lim−→i

F (i, j) agree. Fix i0 ∈ I such
that x, y ∈ limj F (i0, j). Then for each j ∈ J there exists fj : i0 → ij such that xj = yj in F (ij , j).
As I is κ-filtered and J is κ-small, we find i1 ∈ I and maps gj : ij → i1 in I such that gjfj = gj′fj′

for all j, j′ ∈ J . But then x = y in limj F (i2, j), which proves injectivity.

Lemma B.6. Let κ be a regular cardinal.

(i) Every small category I is a κ-filtered union of κ-small categories.

(ii) Let C be a category and X : I → C a diagram. Suppose that I =
⋃
j∈J Ij is a κ-filtered union

and that the colimit colimi∈Ij Xi exists in C, for all j ∈ J . Then the canonical map

lim−→
j∈J

colim
i∈Ij

Xi
∼−→ colim

i∈I
Xi

is an isomorphism (that is, if either colimit exists, then so does the other, and the map is an
isomorphism)

Proof. For part (i), let
(I
κ

)
be the partially ordered set of all κ-small subcategories of I. Then

(I
κ

)
is κ-filtered and I =

⋃
J∈(Iκ)

J is a κ-filtered colimit of κ-small categories.
Part (ii) follows easily by comparing the universal properties.

Definition B.7. Let κ be a regular cardinal and C a cocomplete category. An object X ∈ C is
called κ-compact if the functor

HomC(X,−) : C → Set

commutes with κ-filtered colimits. We denote by Cκ ⊆ C the full subcategory of κ-compact objects.

Example B.8. (i) If Λ is a ring, then a Λ-module is compact (i.e., ℵ0-compact) if and only if it
is finitely presented.

(ii) If λ ≤ κ are regular cardinals, then every λ-compact object is also κ-compact: Cλ ⊆ Cκ.
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Lemma B.9. Let κ be a regular cardinal and C a cocomplete category. Then Cκ is closed under
κ-small colimits.

Proof. Let (Xj)j∈J be a κ-small diagram in Cκ. For any κ-filtered diagram (Yi)i∈I in C we compute

lim−→
i∈I

Hom
(
colim
j∈J

Xj , Yi
) ∼= lim−→

i

lim
j

Hom(Xj , Yi)

∼= lim
j

lim−→
i

Hom(Xj , Yi) (Lemma B.5)

∼= lim
j

Hom(Xj , lim−→
i

Yi) (Xj ∈ Cκ)

∼= Hom(colim
j

Xj , lim−→
i

Yi),

which shows colimj Xj ∈ Cκ as desired.

Lemma B.10. Let F : C � D : U be an adjunction and κ a regular cardinal. If U preserves
κ-filtered colimits, then F (Cκ) ⊆ Dκ.

Proof. Let C ∈ Cκ be κ-compact and D = lim−→i∈I Di a κ-filtered colimit in D. Then

lim−→
i∈I

Hom(F (C), Di) = lim−→
i∈I

Hom(C,U(Di))

= Hom
(
C, lim−→

i∈I
U(Di)

)
= Hom

(
C,U(lim−→

i∈I
Di)
)

= Hom
(
F (C), lim−→

i∈I
Di

)
,

which shows that F (C) is κ-compact.

Definition B.11. Let κ be a regular cardinal. A category C is called κ-presentable if it is cocomplete,
Cκ is (essentially) small and every object is a κ-filtered colimit of κ-compact objects.

The category C is called presentable if it is κ-presentable for some κ.

Proposition B.12. Let C be a κ-presentable category, for some regular cardinal κ.

(i) C is λ-presentable, for every regular cardinal λ ≥ κ.
(ii) Let λ ≥ κ be a regular cardinal. Then every λ-compact object is a λ-small, κ-filtered colimit

of κ-compact objects.

(iii) C =
⋃
λ Cλ, where λ runs through the regular cardinals. In particular, every small set of objects

of C is contained in Cκ, for some regular cardinal κ.

Proof. Let X = lim−→i∈I Xi be a κ-filtered colimit of κ-compact objects, and let λ ≥ κ be a regular
cardinal. By Lemma B.6 we also have

X = lim−→
j∈J

colim
i∈Ij

Xi,
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where J is λ-filtered and each Ij is λ-small. As each colimi∈Ij Xi is λ-compact by Lemma B.9,
we deduce part (i). If moreover we assume that X is λ-compact, then the identity X → X factors
through colimi∈Ij Xi for some j ∈ J . Hence, X is a retract of colimi∈Ij Xi and therefore itself a
λ-small colimit of κ-compact objects. This proves (ii). Finally, for part (iii) we pick some regular
cardinal µ ≥ κ with |I| < µ. Then X = colimi∈I Xi is µ-compact by Lemma B.9.

Example B.13. The categories Set, Ab and Mod(Λ), for a ring Λ, are ℵ0-presentable.
The category Top of topological spaces is not presentable.

Lemma B.14. Let κ be a regular cardinal and C a κ-presentable category.
Then every morphism f : X → Y is of the form

lim−→
i∈I

ϕi : lim−→
i∈I

Xi → lim−→
i∈I

Yi,

where I is a κ-filtered category. Moreover, if λ ≥ κ is a regular cardinal such that Cκ is λ-small
and X,Y ∈ Cλ, then the category I can be chosen to be λ-small.

Proof. Let f : X → Y a map in C, and choose a regular cardinal λ ≥ κ such that Cκ is λ-small and
X,Y ∈ Cλ (it exists by Proposition B.12). We write X = lim−→i∈I Xi and Y = lim−→j∈J Yj as λ-small
and κ-filtered colimits with Xi, Yj ∈ Cκ. Consider the category

K := I ×Cκ/Y Fun([1], Cκ/Y )×Cκ/Y J .

The objects are triples (i, j, φ) consisting of objects i ∈ I, j ∈ J and a morphism φ : Xi → Yj such
that the diagram

Xi Yj

X Y

φ

f

commutes. A morphism (i, j, φ) → (i′, j′, φ′) is a pair (α, β) consisting of maps α : i → i′ and
β : j → j′ such that the diagram

Xi Yj

Xi′ Yj′

Xα

φ

Yβ

φ′

commutes. We make the following claims:

(i) K is λ-small and κ-filtered.
(ii) The projection maps pI : K → I and pJ : K → J are cofinal.
(iii) Let ϕ : X• ◦ pI → Y• ◦ pJ be the natural transformation of functors K → Cκ/Y given by the

projection K → Fun([1], Cκ/Y ). Then the following diagram commutes:

lim−→
k∈K

XpI(k) lim−→
k∈K

YpJ (k)

X Y.

'

lim−→ϕ

'

f
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We first show (i). Since Cκ, I and J are λ-small, it is clear that K is κ-small and non-empty. Let now
(kn)n∈N in K with |N | < κ. As I is κ-filtered, there exists i ∈ I together with maps pI(kn) → i
for all n ∈ N . As Xi is κ-compact, the composite Xi → X → Y = lim−→j∈J Yj factors through
some Yj0 . As J is κ-filtered, there exists j ∈ J and maps pJ (kn) → j and j0 → j. Denoting by
φ : Xi → Yj the induced map, it follows that (i, j, φ) is an upper bound for (kn)n. Similarly, let
(fn : k → k′)n be a κ-small family of maps in K. As I is κ-filtered, we find a map α : pI(k′)→ i such
that α ◦ pI(fn) = α ◦ pI(fm) for all n,m. Again, let j0 ∈ J such that the composite Xi → X → Y
factors through Yj0 . As J is κ-filtered, there exists j ∈ J and maps j0 → j and β : pJ (k′)→ j such
that β ◦ pJ (fn) = β ◦ pJ (fm) for all n,m. Denoting by φ : Xi → Yj the induced map, we obtain a
map f : k′ → (i, j, φ) such that f ◦ fn = f ◦ fm for all n,m. Hence, K is κ-filtered.

We now prove (ii). Since I is filtered, it suffices to show that pI : K → I is surjective on
objects. But this is clear: Let i ∈ I. As Xi is κ-compact and J is κ-filtered, the composite
Xi → X → Y = lim−→j

Yj factors through a map φ : Xi → Yj , and hence (i, j, φ) ∈ K is a preimage
of i. Let now j0 ∈ J and k1 = (i1, j1, φ1) ∈ K arbitrary. As J is filtered, there exists j ∈ J and
maps β : j1 → j and j0 → j. Now, k = (i1, j, Yβφ1) ∈ K is an object such that j0 → j = pJ (k). As
J is filtered, this implies that pJ is cofinal.

The vertical maps in (iii) are isomorphisms by (ii), and the commutativity is clear.

Lemma B.15. Let Λ be a ring and κ a regular cardinal. Let M ∈ Mod(Λ) be a module with
presentation

Λ(λn+1) → · · · → Λ(λ0) →M → 0,

where λ0, . . . , λn+1 < κ. Then Extn(M,−) : Mod(Λ)→ Ab commutes with κ-filtered colimits.

Proof. Let X = lim−→i∈I Xi be a κ-filtered colimit of Λ-modules. Then

lim−→
i∈I

Extn(M,Xi) = lim−→
i∈I

Hn Hom(Λ(λ•), Xi)

= Hn
(
lim−→
i∈I

Hom(Λ(λ•), Xi)
)

= Hn Hom
(
Λ(λ•), lim−→

i∈I
Xi

)
= Extn

(
M, lim−→

i∈I
Xi

)
,

where the second identity uses that filtered colimits in Mod(Λ) are exact.

Lemma B.16. Let X →→ Y be an epimorphism in a Grothendieck category A. Suppose that Y is
κ-compact and that X = lim−→i∈I Xi is a κ-filtered colimit. Then there exists i ∈ I such that the
composite Xi → X → Y is an epimorphism.

Proof. Denote by Y ′i the image of Xi → X → Y . We obtain a factorization

X = lim−→
i

Xi →→ lim−→
i

Y ′i ↪→ Y,

because the formation of filtered colimits is exact in A. As X →→ Y is an epimorphism, we deduce
that lim−→i

Y ′i = Y . As Y is κ-compact, the identity Y → Y factors through some Y ′i , from which we
deduce Y ′i = Y as desired.
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Theorem B.17. Every Grothendieck category A is presentable.

Proof. By step 4 in the proof of Theorem 24.8 there exists a ring Λ and functors

Ker(T ) Mod(Λ) A,
i

t

T

H

where T is a Bousfield localization with fully faithful right adjoint H and t is a right adjoint of i.
Moreover, we have an equivalence of categories

A ∼= Ker(T )⊥ =
{
M ∈ Mod(Λ)

∣∣Hom(C,M) = 0 = Ext1(C,M) for all C ∈ Ker(T )
}
.

Observe that K =
⊕

U∈S Λ/U is a generator of Ker(T ), where S is the set of all submodules U ⊆ Λ
with Λ/U ∈ Ker(T ) (e.g., by checking the criterion (d) in Lemma 24.3). We claim that

Ker(T )⊥ = K⊥.

The inclusion “⊆” is trivial. Conversely, letM ∈ K⊥. For any X ∈ Ker(T ) we choose a presentation
0 → Y → K(λ) → X → 0 for some cardinal λ. Note that Y ∈ Ker(T ). The exact sequence
0→ Hom(X,M)→ Hom(K(λ),M) = 0 shows Hom(X,M) = 0. As X was arbitrary, it also holds
that Hom(Y,M) = 0. Keeping in mind that Ext1(K(λ),M) = Ext1(K,M)λ = 0, we deduce from
the exact sequence 0 = Hom(Y,M) → Ext1(X,M) → Ext1(K(λ),M) = 0 that Ext1(X,M) = 0,
and hence M ∈ Ker(T )⊥.

Now choose a free presentation Λ(λ2) → Λ(λ1) → Λ(λ0) → K → 0 and a regular cardinal
κ ≥ λ2, λ1, λ0. Then Hom(K,−) and Ext1(K,−) preserve κ-filtered colimits by Lemma B.15.
Hence Ker(T )⊥ is closed under κ-filtered colimits. In other words: The functor H : A → Mod(Λ)
preserves κ-filtered colimits. But then Lemma B.10 shows that T preserves κ-compact objects.

Now, every module is a filtered colimit of finitely presented modules and hence also a κ-filtered
colimit of κ-compact objects, by Proposition B.12. Applying T then shows that every object of A
is a κ-filtered colimit of κ-compact objects. Therefore, A is κ-presentable.

Lemma B.18. Let A be a Grothendieck category and κ a regular cardinal such that A is κ-
presentable. Then Aκ is abelian if and only if Aκ is closed under kernels. In this case, the inclusion
Aκ ↪→ A is exact and closed under extensions.

Proof. Observe that Aκ is closed under cokernels. Hence, if Aκ is closed under kernels, then Aκ

is an abelian subcategory. Conversely, suppose that Aκ is abelian. Let 0 → X → Y
f−→ Z be an

exact sequence in Aκ. We need to show that X is also the kernel of f in A. Let A ∈ A and write
A = lim−→i∈I Ai as a κ-filtered colimit of κ-compact objects. Consider the commutative diagram

0 limi∈Iop Hom(Ai, X) limi∈Iop Hom(Ai, Y ) limi∈Iop Hom(Ai, Z)

0 Hom(A,X) Hom(A, Y ) Hom(A,Z),

where the first row is exact. It follows that the second row is exact. In other words, X is also the
kernel of f in A.

Suppose now that Aκ is abelian. It remains to prove that Aκ is closed under extensions. Let
E := [0 → X → Y → Z → 0] be an extension in A with X,Z ∈ Aκ. Write Y = lim−→i∈I Yi
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as a κ-filtered colimit of κ-compact objects, so that E is a κ-filtered colimit of exact sequences
0 → Xi → Yi → Z. By Lemma B.16 there exists i0 ∈ I such that Yi0 →→ Z is an epimorphism.
Observe that X = lim−→i∈I Xi, and hence the κ-compactness of X implies that X ∼−→ lim−→i∈I Xi factors
through Xi1 , for some i1 ∈ I. Hence, the map g : Xi1 →→ X is an epimorphism. Enlarging i0 and
i1, if necessary, we may assume i0 = i1. Now, we have a commutative diagram

0 Ker(g) Ker(g) 0 0

0 Xi1 Yi1 Z 0

0 X Y Z 0

g

with exact rows. By the four lemma, we deduce that Yi1 →→ Y is an isomorphism with kernel Ker(g).
As Ker(g) is κ-compact by assumption, we conclude that Y = Coker(Ker(g) → Yi1) is κ-compact
as desired.

Proposition B.19. Let A be a Grothendieck category. There exists a regular cardinal λ0 such that
for all regular cardinals λ ≥ λ0 the subcategory Aλ ⊆ A is abelian and closed under extensions.

Proof. Let κ be a regular cardinal such that A is κ-presentable. Choose the regular cardinal λ0 ≥ κ
such that Aκ is λ0-small and the kernel of each map in Aκ is λ0-compact.

For all regular cardinals λ ≥ λ0 we claim that Aλ is abelian and closed under extensions. By
Lemma B.18 it suffices to check that Aλ is closed under kernels.

Let f : X → Y be a morphism in Aλ. By Lemma B.14 we may suppose that f is of the form

lim−→
i∈I

fi : lim−→
i∈I

Xi → lim−→
i∈I

Yi,

where Xi, Yi ∈ Aκ and I is a λ-small and κ-filtered category. By assumption, Ker(fi) is λ-compact.
As A is AB5, we deduce from Lemma B.9 that Ker(f) = lim−→i∈I Ker(fi) is λ-compact as desired.

Lemma B.20. Let κ > ℵ0 be a regular cardinal and A a κ-presentable Grothendieck category such
that Aκ is abelian. Then a morphism X → Y in C(A) with X ∈ C(Aκ) and Y acyclic factors
through an acyclic object in C(Aκ).

Proof. We need κ > ℵ0 to ensure that C(Aκ) is closed under countable colimits.
Suppose first that X ∈ C−(Aκ). Let a ∈ Z such that Hi(X) = 0 for all i > a. We will inductively

construct a sequence

X = Xa → Xa−1 → Xa−2 → · · · → Y

in C(Aκ) such that Hi(Xn) = 0 for all i > n. Suppose that Xn has been defined. Consider the
pullback

V Ker(dXn : Xn
n → Xn+1

n )

Y n−1 Ker(dY : Y n → Y n+1)

y
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and write V = lim−→i
Vi as a κ-filtered colimit with Vi ∈ Aκ. Observe that the top horizontal

arrow is an epimorphism by Proposition 3.10. As Xn−1
n and Ker(dXn) are κ-compact, it follows

from Lemma B.16 that the map Xn−1
n → V factors through some Vj such that the composite

Vj → V → Ker(dXn) is an epimorphism. Now define a complex Xn−1 by Xi
n−1 = Xi

n if i 6= n−1 and
Xn−1
n−1 = Vj , with the differential induced by the one on Xn. By construction we have Hi(Xn−1) = 0

for all i > n− 1 and Xn−1 ∈ C(Aκ). Moreover, X ′ := lim−→n
Xn is an acyclic complex in C(Aκ) such

that X → Y factors through X ′.
Let now X ∈ C(Aκ) be general. Then X = lim−→n≥0

τ≤nX. Suppose that for some n ≥ 0 we have
defined an acyclic complex Xn in C(Aκ) such that τ≤nX → Y factors through Xn. Consider the
pushout

τ≤nX τ≤n+1X

Xn X ′n+1

q

and observe that X ′n+1 lies in C−(Aκ). By the definition of the pushout, the map Xn → Y factors
through a map X ′n+1 → Y , which by the discussion above factors through some acyclic complex
Xn+1 ∈ C−(Aκ). By the construction the diagram

τ≤nX τ≤n+1X

Xn Xn+1

commutes. Passing to the colimit, we obtain a factorization X = lim−→n
τ≤nX → lim−→n

Xn → Y where
lim−→n

Xn ∈ C(Aκ) is acyclic, since the formation of filtered colimits in A is exact.

Theorem B.21. Let A be a κ0-presentable Grothendieck category, where κ0 > ℵ0 is a regular
cardinal such that Aκ0 is abelian. For every regular cardinal κ ≥ κ0 the inclusion Aκ ⊆ A induces
a fully faithful functor D(Aκ)→ D(A). In particular,

D(A) =
⋃
κ≥κ0

D(Aκ)

is a locally small category.

Proof. From Lemma B.20 and Exercise 11.5 we deduce that the inclusion K(Aκ) ↪→ K(A) induces
a fully faithful functor D(Aκ)→ D(A). Finally observe that every complex belongs to Aκ for some
κ ≥ κ0 by Proposition B.12(iii).
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